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Abstract⎯ Despite of the appearance of numerous new materials, the iron based alloys and steels continue
to play an essential role in modern technology. The properties of a steel are determined by its structural state
(ferrite, cementite, pearlite, bainite, martensite, and their combination) that is formed under thermal treat-
ment as a result of the shear lattice reconstruction γ (fcc) → α (bcc) and carbon diffusion redistribution. We
present a review on a recent progress in the development of a quantitative theory of the phase transformations
and microstructure formation in steel that is based on an ab initio parameterization of the Ginzburg–Landau
free energy functional. The results of computer modeling describe the regular change of transformation sce-
nario under cooling from ferritic (nucleation and diffusion-controlled growth of the α phase) to martensitic
(the shear lattice instability γ → α). It has been shown that the increase in short-range magnetic order with
decreasing the temperature plays a key role in the change of transformation scenarios. Phase-field modeling
in the framework of a discussed approach demonstrates the typical transformation patterns.
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1. INTRODUCTION
Despite a broad distribution of numerous new

materials, steel known from ancient times remains the
main structural material of our civilization [1], due to
high availability of its main components (Fe and C)
and diversity of properties reached by a realization of
various (meso)structural states [2–6]. One can control
the structural state of steel due to a rich phase diagram1 The article is published in the original.

STRUCTURE, PHASE TRANSFORMATIONS,
AND DIFFUSION
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of iron with several structural transformations at cool-
ing from moderately high temperatures ( δ → γ → α);
the presence of carbon adds carbide phases, cementite
Fe3C being the most important one.

Development of the phase transformations in steel
includes two main types of physical processes, namely
the crystal lattice reconstruction and redistribution of
carbon between the phases. Depending on the rates of
these processes and the morphology of decomposition
products, metallurgists separate several main types of
the transformations, namely, ferrite, pearlite, bainite,
and martensite formation, which follow one another
with decreasing temperature. All these transforma-
tions (except the martensitic one) involve both shear
and diffusion mechanisms, their relative importance is
changed with the temperature increase. The interplay
of different types of transformations determines the
diversity of properties of steel and therefore it is of a
crucial importance for our understanding of metallur-
gical processes.

Regardless of the great practical significance and
comprehensive experimental study, the mechanisms
of phase transformations in steel are not fully under-
stood. Firstly, there is still no commonly accepted
quantitative theory that could describe the change of
the transformation mechanism with temperature
increase from martensitic (the lattice instability γ → α
over the entire volume) to ferritic (diffusion-con-
trolled nucleation and growth of precipitates of α-Fe).
Secondly, the properties of steel are due to the precip-
itates morphology, understanding of which requires
the development of quite a complicated kinetics the-
ory of phase transformations, which takes into account
simultaneously the lattice degrees of freedom and car-
bon diffusion.

Based on state-of-the-art first-principle calcula-
tions [7, 8] and combining them with the previous
models [9–11], we have recently proposed a consistent
model of phase transformations in steel [12, 13] that
includes a generalized Ginzburg–Landau functional
with ab initio parameterization, and nonlinear elastic-
ity equations for the shear transformation and diffu-
sion equation for the carbon concentration. In the
framework of this model it was shown that the main
factor determining scenarios of the phase transforma-
tions in steel is the magnetic state of Fe and its tem-
perature dependence. The constructed curves of the
start of ferrite, bainite, and martensite transformations
(A3, T0, MS) coincided with the experimentally known
ones with good accuracy, and the phase field simula-
tions reproduced the typical transformation patterns.
In Ref. [14] this model was generalized, with taking
into account the cementite formation, and it was
shown that the pearlite colony can emerge by an auto-
catalytic mechanism at overcooling below the critical
temperature.

Here we review the earlier obtained and new results
in the framework of this model. In comparison with
previous publications, we consider in more detail the
results of phase field simulation of transformation
kinetics. Also, we discuss the effect of external mag-
netic field on the curves of transformations diagram.

2. PHASE TRANSFORMATIONS 
AND MICROSTRUCTURE FORMATION 

IN STEEL

Figure 1а presents the experimental transformation
diagram of the Fe–C system, and Fig. 1b shows the
typical microstructures arising during these transfor-
mations. The boundaries of two-phase regions “aus-

Fig. 1. (a) Schematic transformations diagram and (b) main scenarios of phase transformations in steel. The lines A1, A3, and Acm
are the boundaries of two-phase regions α + γ and γ + θ, as well their metastable extensions below the eutectoid temperature Teutec
[16, 17]; BS and MS are lines of start of bainitic and martensitic transformations, respectively [4, 18].
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tenite-ferrite” (A1, A3) and “austenite–cementite”
(Acm), as well as their metastable extensions, are con-
structed according to data [15–17]. The lines of the
start of the bainitic (BS) and martensitic (MS) transfor-
mations are drawn following results in Ref. [18, 19].
Also, the eutectoid temperature Teutec (~1000 K) is
indicated.

At high temperatures (T > A3, T > Acm) the fcc crys-
tal structure of iron (γ-Fe, austenite) with homoge-
nous carbon distribution is stable. Small overcooling
below A3, results in diffusion-controlled precipitation
of ferrite (α-Fe, almost pure bcc iron) and the precip-
itation of cementite (orthorhombic θ phase with
25 at % carbon) takes place below Acm. There are sev-
eral morphological types of ferrite [20]; allotriomor-
phic ferrite is usually located at the grain boundaries,
whereas the needle crystals of Widmanstätten and
acicular ferrite form in the bulk.

If both conditions T < A3, T < Acm, and T > BS are
fulfilled simultaneously, austenite usually decomposes
into alternating lamellae of ferrite and cementite, and
the interlamellar spacing decreases with overcooling
temperature,  The resulting regular
dispersed structure is known as pearlite. The kinetics
of pearlite transformation includes the autocatalytic
generation of new lamellae, usually on the grain
boundary, and the growth of the lamellar colony into
the bulk [3].

Overcooling below the temperature BS results in a
bainitic transformation, which develops by autocata-
lytic nucleation and growth of successive sub-units [4].
In the case of upper bainite (which forms in the tem-
perature interval 800–670 K) the ferrite platelets with
the same crystallographic orientation are separated by
cementite precipitates. In the case of lower bainite,
which is formed at a lower temperature, the individual
ferrite subunits contain the small ε-carbide precipi-
tates (usually transforming into cementite in the later
stages) in addition to the inter-platelet cementite laths.
Presumably, a crucial role in the start of bainite trans-
formation is played by a temperature of paraequilib-

λ − eutec~ 1 ( ).T T

rium T0 where the free energies of the α and γ phases
with the same initial carbon concentration become
equal. Temperature T0 was introduced in Ref. [21] as a
pre-condition for the start of bainite transformation by
displacive mechanism (cooperative displacements of
iron atoms). It is assumed in [4, 21] that the diffusion
is slower than the shear transformation and therefore
there is no redistribution of carbon between the α and
γ phases during the growth of α phase plates.

At deeper overcooling (below the start temperature
of martensitic transformation, MS) the diffusionless
γ → α lattice reconstruction occurs by displacive
mechanism, and cementite does not appear. Herewith
the twinned structure of martensitic plates compen-
sates for the elastic stresses accompanying the lattice
reconstruction. Experimental evidence of the exis-
tence of two types of martensite, namely, isothermal
(scenario of nucleation and growth of the colony of
α-Fe plates with different orientation) and athermal
(scenario of spontaneous lattice instability develop-
ment over the entire volume simultaneously) – were
given in [22–25], wherein the first scenario is realized
at a higher temperature.

3. CURRENT UNDERSTANDING 
OF PHASE TRANSFORMATIONS 

IN IRON AND STEEL

As it accepted now [4], the displacive mechanism
of transformation plays essential role in realization not
only the martensitic and the bainitic transformation,
but in the formation of high temperature structural
state, such as Widmanstätten and acicular ferrite, as
well. Thus, understanding of physical mechanisms of
the lattice instability of fcc (γ) iron is an essential part
of our general view on the phase transformations in
steel. Two possible mechanisms of γ → α lattice recon-
struction were proposed, which correspond to the
Bain (tetragonal distortion) [26] and Kurdjumov–
Sachs (two shear) [27] deformations schemes. Despite
the fact that the Kurdjumov–Sachs scheme is better in
corresponding to experiment, the Bain deformation
(see Fig. 2) usually is considered in the most of theo-
retical approaches. Reason for this is due to the fact
that Bain scheme gives a simplest transformation way
that captures, however, important transformation fea-
tures. Based on the Bain transformation scheme, in
Refs. [28, 29] there has been proposed a phenomeno-
logical model, being further developed in Refs. [9, 11],
which describes the main features of the martensitic
transformation, including the formation of coherent
systems of twin-like domains.

An overwhelming majority of materials demon-
strating the martensitic transformation can be treated
as the Hume-Rothery alloys where a particular crystal
lattice corresponds to some interval of electron con-
centration per atom [30]. Electronic mechanisms of
the crystal lattice instabilities for these cases are rea-

Fig. 2. Lattice γ → α reconstruction due to Bain deformation.
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sonably well understood. They are related to enhanced
van Hove singularities in the electron energy spectrum
and to the energy gain arising when the Fermi energy
lies in a pseudogap [31]. In the new crystal structure,
the geometry of the Brillouin zone allows to accom-
modate all electrons with the essential decrease of the
total energy. Since the position of the Fermi energy is
determined by the number of electrons per atom, the
Hume-Rothery alloys are also called electronic
phases. Typically, in these alloys the transformations
are close to the second-order phase transitions with a
very small hysteresis, the low-temperature phase being
more close packed than the high-temperature one. Of
these alloys, a soft-mode picture of phonon spectra is
typical [29, 32, 33].

However, the iron-based alloys belong to a group of
rare materials where the high-temperature phase
(fcc, γ) is close packed and the low-temperature phase
(bcc, α) is not. Neither experimental data [34] or
recent first-principle calculations [35, 36] show soft-
mode phonons in fcc Fe above the start temperature of
martensitic transformation MS (see Fig. 3). The ques-
tion whether a soft-mode in phonon spectra appears
under cooling, or the mechanism of transition is more
complicated than for the Hume-Rothery alloys and
cannot be described in terms of individual phonon soft
modes, is unclear. The situation looks paradoxical: the
γ → α transformation in iron was historically a proto-
type of martensitic transitions at all, but this case
remains still rather poorly understood, in comparison
with many cases discovered later.

Starting from the seminal works by Zener [37], it is
commonly accepted that magnetism plays a crucial
role in the phase equilibrium of iron and its alloys,
including the basic fact that the temperature of the
γ → α transformation in elemental Fe is close to the
Curie temperature of α-Fe, and bcc iron is stable at
low temperatures (see, e.g, [38, 39]). Moreover, the
recent first-principles calculations [7, 8, 40] showed
that magnetic and lattice degrees of freedom are
strongly coupled in γ-Fe. Therefore, it can be
expected, the classical martensitic scenario (through
lattice instability over the entire volume) of the γ → α
transformation is realized at overcooling below some
temperature where a strong enough short-range ferro-
magnetic order arises in γ-Fe (see Section 6 for farther
discussion).

The mechanism of bainite transformation that
appears for temperature just above MS remains a sub-
ject of debate so far [4, 19]. Two competing theories
(diffusion-controlled growth [41–45] and displacive
diffusionless nucleation [4, 21, 46]) have been pro-
posed to explain this transformation. This problem has
not been solved until now; perhaps the upper bainite
formation is a diffusion-controlled process and the
lower bainite forms via lattice shearing, as it was
assumed in Ref. [47]. Interestingly, in hyper-eutectoid
steels the upper bainite is observed even at T > T0

[45, 48], where T0 is the paraequilibrium temperature
at which the free energies of the α and γ phases with
initial carbon concentration are equal [21, 49]; that is
in clear disagreement with the displacive model and
allows us to consider the upper bainite as a diffusion-
controlled nonlamellar eutectoid decomposition
product. At the same time, the lower bainite is always
formed below T0 [19]. However, in hypo-eutectoid
steels the curve of the start of bainitic transformation,
BS, is lower than T0, therefore the thermodynamic
possibility of shear transformation does not always
lead to the formation of upper or lower bainite. Thus,
until now it is not completely clear which mechanism
actually controls the bainitic transformation.

The other sophisticated problem is nucleation and
growth of pearlite colonies, which is a particular case
of a more general issue of eutectoid decomposition.
Transformations of this type are also observed in
Zn‒Al [50], Cu–Al [51], Au–In [52], Cu–Zn,
Al‒Mn, Cu–Sn, Cu–Be, etc., and the precipitates
morphology (lamellar or globular structure) depends
on the type of alloy and the position of alloy parame-
ters on the phase diagram. Although the pearlite trans-
formation (PT) in steel is studied experimentally in

Fig. 3. Phonon dispersion curves and corresponding pho-
non density of states of paramagnetic fcc Fe as calculated
within the nonmagnetic GGA (top) and DMFT (bottom)
[35]. The DMFT result is further interpolated using a
Born-von Kármán model with interactions expanded up to
the fifth nearest-neighbor shell. The results are compared
with neutron inelastic scattering measurements at 1428 K.
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detail [53–55], the process of lamellae colony forma-
tion remains unclear.

The well-known spinodal decomposition kinetics
[56] is not applicable to PT because the mixing energy
of carbon in γ-Fe is positive [57, 58], so that the
γ phase is stable with respect to small f luctuations of
the composition. Thus, more advanced approaches
are required for understanding of the PT kinetics.
Theoretical studies have been focused on determining
the interlamellar spacing and its temperature depen-
dence in a steady state growth of the colony, as well as
the problem of stability of the transformation front
[21, 59–65]. In Refs. [21, 59] it has been shown that
the interlamellar spacing in this case obeys the law

 where  As it was found
[61], the interlamellar spacing must ensure a maxi-
mum growth rate; thin lamellae dissolute and wide
ones split during the growth of colony, thus optimum
interlamellar spacing is achieved. Herewith, there was
supposed an acceleration of diffusion on the transfor-
mation front. The recent results of phase-field simula-
tions [63–65] confirm the necessity of the above
assumption. This essential result describes the condi-
tion of steady state growth, but it does not concern the
problem of nucleation of the pearlite colony, which
remains in shadow.

By now, a few important questions are still open.
One of these questions is whether only one of the
phases (α or θ, and namely which one) appears first or
they both form together [66–68]. The question, which
factors ensure the stability of the front of the colony, is
remained open to discussion [61–65]. The two com-
peting mechanisms of lamellae multiplication by lat-
eral replication [3, 53, 69] and splitting of existing
lamellae [70] have been proposed. In addition, the
reasons for the transition from lamellar to globular
pearlite structure with increasing temperature is a
matter of considerable interest [71–75]. There is no
theory to explain the appearance of pearlite type colo-
nies under realistic parameters.

Even well-known kinetics of ferrite/cementite pre-
cipitation from a supersaturated austenite includes
some unresolved problems. In particular, the mecha-
nism of the lattice rearrangement γ → θ is under dis-
cussion. As is proposed in Ref. [76], the γ → θ trans-
formation is realized through an intermediate meta-
stable ε cementite with hexagonal close-packed (hcp)
crystal structure, which is closer to γ-Fe than the ort-
horhombic θ phase. The recent ab initio calculations
[77] indicate that lattice γ → θ reconstruction can be
implemented through a specific Metastable Interme-
diate Structure (MIS) that develops near the bound-
ary of ferrite plate when the carbon concentration is
about 15% at., i.e. far from the stoichiometric compo-
sition of cementite. The change of mechanical proper-
ties of pearlitic steel after annealing indicates the exis-
tence of metastable cementite states in the “fresh”
pearlite [3].

λ Δ~ 1 ,T Δ = − eutec.T T T

In the case of ferrite transformation, the attention
of the researchers is drawn to the difference of several
morphological forms, polygonal, Widmanstätten, and
acicular ferrite (WF, AF) [20, 78, 79]. The polygonal
and the Widmanstätten ferrite are realized at a little
undercooling (i.e. above the T0 temperature) and,
therefore, they both are diffusion-controlled transfor-
mations. However, in the first case the lattice coher-
ence on the γ/α interface is lost so that elastic stresses
are absent, whereas in the second case the elastic
stresses relax as a result of twinning of α-phase plates.
Unlike the two cases mentioned, the acicular ferrite
appears below T0 and it grows by the displacive mech-
anism [4, 20]. Thus, for the description of the WF and
AF, one needs models that simultaneously take into
account both carbon diffusion and realization of a dis-
placive phase transformation. Phase-field simulations
of WF formation [80] led to a controversial conclusion
that the growth of the WF plates requires high anisot-
ropy of interfacial energy, but the possible role of elas-
tic stresses has not been considered in this work.

Thus, both shear and diffusive scenarios of phase
transformations in steels require detailed theoretical
study. First, it is necessary to explain the mechanisms
responsible for the change of transformation scenarios
(ferrite → pearlite → bainite → martensite) with
decreasing temperature. Secondly, the precipitates
morphology in the decomposition (including the
nucleation and growth of the pearlite and bainite col-
onies, conditions of lamellar or globular pearlite,
upper and lower bainite formation, etc.) is a subject of
considerable interest. Besides, in some cases (such as
bainite or WF transformation) displacive and diffusion
kinetics should be described together. Discussion of
these problems is a matter of the rest part of the pres-
ent review.

4. THEORETICAL APPROACHES 
TO THERMODYNAMICS AND KINETICS 

OF PHASE TRANSFORMATIONS IN STEEL
In the framework of a phase-field approach [81]

the evolution of microstructure during the martensitic
transformation (MT) can be described by the Allen–
Cahn equation [9, 11, 82, 83] for a non-conserved
order parameter in the capacity of which the tetrago-
nal deformation  is chosen:

(1)

(2)

where  is the Ginzburg–Landau free energy func-
tional,  is the parameter determining the interface
energy, and  is the nonlinear elastic free energy contri-
bution [84, 85] that is presented as a polynomial over :

(3)
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The transformation mechanism in this model
switches from the normal type (nucleation and
growth) to a martensitic scenario (lattice instability)
when the parameter A2 decreases, so one can accept

 where TM is the start tempera-
ture of MT [10]. However, as was shown in [86], all
components of the deformation tensor should be taken
into account for a proper description of elastic energy
at the polymorphic transformation, because they
should satisfy a set of Saint-Venant’s compatibility
conditions  [87], which can be written
in 2D case as:

(4)

where  is a tetragonal deformation,
 is a dilatation,  is a shear

(trigonal) deformation,  are the components of
deformations tensor,  and

 and ui are displacements. Therefore,
Eq. (3) should include additional terms:

(5)

The coefficients   are expressed in terms of
elastic moduli [86], , , and

. As was shown in Refs. [9, 11], by vir-
tue of Saint-Venant’s compatibility conditions (4), the
Eq. (1) can be converted to a integro-differential form
taking into account the effective long-range interac-
tions for the field of order parameter. Due to these
long-range effects, the transformation occurs consis-
tently in different microvolumes and is accompanied
by the pattern formation that is really characteristic of
the MT. Also it was reported on the specific tweed
structure that appears as a result of compositional
fluctuations and long-range effects at a moderately
high temperature.

It should be noted that an energy-controlled effect
of accomodation of elastic stresses that leads to the
formation of modulated structures was early consid-
ered in Ref. [88]. At the present time the role of long-
range interactions in the pattern formation is well
known [89–91] and was discussed many times for very
different systems, from stripes in high-temperature
superconductors [92–94] to stripe domains in ferro-
magnetic films [95–97].

The equations of motion for the atomic displace-
ments u(r,t), in the form [98]

(6)
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are more convenient than Eq. (1) for numerical simu-
lation of the transformations kinetics. Here ρ is the
density,  are the components of elastic stresses,
i, j = {x, y}. The solution of Eq. (6) satisfies the Saint-
Venant’s compatibility conditions automatically and
can contain also the lattice vibrations (lattice tempera-
ture). This approach has been used in the simulations
of MT in Refs. [10, 99].

First theoretical description of the martensitic type
phase transformation in 3D case was proposed in Refs.
[28, 29]. This approach is based on the expansion of
the Ginzburg-Landau functional over deformations
relevant for the lattice transformation and taking into
account only the deviatoric components ( ) of the
deformations tensor:

(7)

where  
Within this model, the transformation mechanism is
changed from “nucleation and grows” to lattice insta-
bility development (martensitic scenario) when
parameter B decreases.

In Ref. [10] the contributions related to carbon
concentration and its interplay with deformations have
been added to the free energy, and the system of equa-
tions for atomic displacements (6) and the Cahn–Hil-
liard equation for carbon diffusion [56] was resolved
by phase-field simulations for the martensitic and
pearlitic scenarios of phase transformations. The
equation for the carbon diffusion has a form:

(8)

where c is a local carbon concentration, D is a carbon
diffusion coefficient. Herewith the free energy func-
tional has a form of:

(9)

where  is the density of elastic free energy, which
includes the term given by Eq. (5) and contribution of
concentration expansion,  is the
chemical contribution to the free energy, and the
term  takes into account the coupling
between elastic distortions and composition changes.
Typical transformation patterns obtained in the
framework of this approach are shown in Fig. 4. The
model (8), (9) [10] is one of the first attempts to take
into account the interplay between the diffusive and
displacive mechanisms of phase transformation.
However, this approach is purely phenomenological
and contains assumptions that are incorrect for steels.
For example, the coupling contribution  did not
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include the linear concentration term, although the solu-
tion energies of carbon are different in the γ and α phases
[100–102]. Besides, the proposed model assumes that
mixing energy of carbon in the γ phase is negative in
disagreement with the experiment [57] and ab initio
calculations [58]. Finally, precipitates morphologies
of pearlite obtained in the simulations were far from
those observed in the experiments [3, 53, 69].

It should be noted that the mechanism of colony
formation in the system with a positive mixing energy
(such as the γ phase) is unknown. The proposed

approaches considered mostly the evolution of exist-
ing colony of alternating plates of ferrite and cementite
placed on the f lat grain boundary [62–65]. The model
of eutectoid transformation in a system with a sym-
metric phase diagram was considered in Ref. [62]
where the growth of two phase lamellae was observed
in the case of equal diffusion coefficients in the differ-
ent phases (see Fig. 5). In a more realistic case the
widths of cementite and ferrite lamellae are different,
the carbon diffusion coefficient in ferrite is much
more larger than this one in cementite and austenite,
therefore an assumption of the diffusion acceleration
on the colony front is required to provide steady state
growth [63, 64].

The problems of early stages of the colony forma-
tion and the multiplication of lamellae remain out-
side the scope of proposed models. The similar issues
exist in the eutectic colonies growth, where the meta-
stable liquid phase decomposes into two new phases
at the solidification under a temperature gradient
[103–107] or without it [108–110].

As was discussed above, the regular martensite pat-
tern formation is driven by the accommodation of
elastic stresses to minimize the energy. In last decade
the attention of researchers was attracted to the prob-
lem of the plastic accommodation of transformation
strains that provides another relaxation channel of
elastic energy minimization [111–114]. It was shown
that accounting for the plastic relaxation processes
results in the possibility of the easier martensitic trans-
formation and a more complex and coarser micro-
structure (see Fig. 6). It should be noted that the
essential role of plastic deformation in a phase trans-
formation was early predicted in Ref. [115, 116] where
a single ellipsoidal nucleus has been considered. The
general phase-field approach including a system of the
coupled equations for the order parameters of phase
transformation and the mechanics equation for dislo-
cation-assisted plasticity was proposed in Ref. [114].

The main features of the pattern formation in the
course of the martensitic-type structural phase transi-
tions proved possible to describe within the framework
of the models proposed in Refs. [9–11, 112, etc.]. The
scenarios of athermal [10, 86] (lattice instability over
the entire volume in the case of rapid quenching), iso-
thermal [9, 11, 117] (autocatalytic generation of mar-
tensitic plates in the case of holding the steel at a mod-
erate temperature), stress-assisted, and strain-induced
[112, 113, 118] MTs were discussed. However, it
remained unclear how to apply more correctly these
model approaches to the real iron and steel.

The general disadvantage of the theoretical
approaches considered above is the phenomenological
form of free energy density. In particular, the authors
do not distinguish the enthalpy and entropy contribu-
tions to the free energy density, therefore the micro-
scopic meaning of parameters appears lost and their
correct choice is impracticable.

Fig. 4. The appearance and evolution of martensitic struc-
ture to pearlite-like one in the model taking into account
an interplay between diffusive and displacive phase trans-
formations; (a) = 4000, (b) 6000, (c) 12000 [10].

(a) (b) (c)

Fig. 5. The structure of stationary growing colonies in eutec-
toid system with a simmetric phase diagram at different tem-
peratures; T/Teutec = (a) 0.59, (b) 0.70, (c) 0.82 [62].

(a) (b) (c)

Fig. 6. Evolution of martensite in 2D case with only (a)–(c)
elastic and (d)–(f) with elasto-plastic deformations; t =
(a, d) 0, (b, e) 25, (c, f) 100 [111].

(a) (b) (c)

(d) (e) (f)
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5. THE ab initio BASED MODEL 
OF SHEAR-DIFFUSION PHASE 

TRANSFORMATIONS IN IRON AND STEEL
The consistent model of phase transformations in

steel should take into account (1) the lattice recon-
struction γ → α during cooling to the critical tempera-
ture (Bain [26] or Kurdjumov–Sachs [27] deforma-
tion); (2) Saint-Venant’s compatibility conditions [87]
for the components of deformations tensor leading to
the appearance of effective long-range interactions for
the field of the order parameter [9–11]; (3) redistribu-
tion of carbon between the phases, including the for-
mation of cementite. Herewith, the Ginzburg–Lan-
dau free energy functional should include the mag-
netic energy contribution.

5.1. Ab initio Parameterization 
of Bain Transformation Path

The total energy per atom along the Bain deforma-
tion path was calculated for both ferromagnetic
ordered and paramagnetic (disordered local moment,
DLM) states of iron [7, 8]. The difference between
energies in these states is related to magnetic exchange
energy. The ab initio computational results show that
the appearance of ferromagnetic order leads to the
change of the preferable crystal structure of Fe from
fcc to bcc (see Fig. 7). In [8] was also shown that there
is strong coupling between the magnetic and lattice
subsystems in fcc Fe so that exchange energy drasti-
cally changes due to the volume increase or tetragonal
distortions (see Fig. 8). In addition, the ferromagnetic
ordered fcc structure is unstable in respect to fcc →

bcc transformation. These results suggest that the
martensitic transformation of Fe can appear as a result
of lattice instability due to the increase in short-range
magnetic order under the cooling.

The first-principles computational results allow us
to find an explicit expression for the density of free
energy for pure Fe, which takes into account both
deformations and magnetic degrees of freedom. For this
purpose, we represent the magnetic-dependent part of
the total internal energy in Heisenberg-like form

(10)

where  is the correlation function of
magnetic moments on sites i and j, EPM is the energy of
paramagnetic state, and the brackets 〈…〉 mean the
average over an ensemble of magnetic configurations
at a given temperature. Assuming that the nearest-
neighbor contribution is dominate in exchange inter-
actions, the energy density can be presented as

(11)

where   is the volume per atom and m is

the magnetic moment,  is the
spin correlation function dependent on temperature;

 stands for the totally disordered paramagnetic
(PM) state and , for the ferromagnetic (FM)
ground state. The exchange energy  can be
extracted from the computational data [7, 8],

(12)

It is assumed here that  depends on the Bain
tetragonal deformation et only, and the value of dilatation
is chosen from the minimum of energy at a given et.
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Fig. 7. Variation in the total energy per atom along the Bain
deformation path for different magnetic states. FM (empty
triangles) and AFM (solid triangles) label collinear ferro-
magnetic and antiferromagnetic structures, SS (empty cir-
cles) corresponds to the spin-spiral state, DLM (crosses)
belongs to the disordered local moments approximation of
paramagnetic state, DLM0.5 (empty diamonds) stands for
the DLM state with a total magnetic moment equal to half
of that for the FM state [7].
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In order to determine the spin correlation function,
the model proposed by Oguchi for the total spin equal
to 1/2 [119] was employed as a benchmark in Refs.
[12, 13]. In this model

(13)

(14)

where  is the Lande factor,  is the Bohr magne-
ton, H0 is the external magnetic field (if it is present),

 is the reduced magnetization determined from the
transcendental equation:

(15)

The essential advantage of the Oguchi model (com-
pared with the well-known Langevin formula for the
magnetization) is the accounting for the short-range
magnetic order at T > TC, where TC is the Curie tem-
perature.

Based on these formulas, in Ref. [13] there was
accepted that  (without an external mag-
netic field) for T > TC, and the empirical dependence
of magnetization [120] was used for T < TC. It was
assumed there that (TC) ~ 0.4, according to Ref.
[119]. The Curie temperature TC is related to the
exchange parameter as kTC(et) , with the
numerical factor  = 0.472 for α-Fe; this choice of 
provides an agreement of the Curie temperature with
the experiment, TC = 1043 K. The correlator for γ-Fe
is chosen in a similar way, with the Curie temperature

 → 300 K, according to the calculations [8] for the
fixed atomic volume  Å3;  according
to Ref. [121] (see [13] for details). The nonphysical fer-
romagnetic long-range ordering in γ-Fe is not essen-
tial for our model, but the high-temperature short-
range ordering in both α and γ phases is important
enough for the transformation kinetics.

Assuming that tetragonal deformation is counted
from an fcc phase (et = 0 in the γ phase and

 in the α phase) we consider the order
parameter  which is related to the Bain
deformation as . Positive and nega-
tive values of  correspond to the two possible (mutu-
ally orthogonal) directions of the Bain deformation in
two-dimensional case.
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The energies found from the first-principles calcu-
lations [7, 8, 13] for pure iron were approximated by
the following polynomials:

(16)

Its form guarantees an extremum at the points 
or , and parameters ,  were
found by fitting to the ab initio computational results
(see [13] for the details).

The Bain path energies are modified in the pres-
ence of carbon:

(17)

where the function  has been chosen in the form

. Thus, in our approximation the
dependence of Bain path energy on carbon concentra-
tion is reduced to the accounting for the solution ener-
gies of carbon, , and the energies of carbon-
carbon interactions (mixing energies)  in the γ and
α phases, but not in the intermediate states. The solu-
tion energies were obtained from ab initio calculations
(see [13] for the details) and mixing energies from
Refs. [57, 58]. It should be noted that the known esti-
mates of  vary widely from 1 to 3 eV/at, i.e. the

phase is to be stable with respect to carbon decom-
position. If the changes of carbon concentration are
small or moderate (as in the cases of ferrite, marten-
site, and in the early stages of bainite transformations)
the contribution of carbon-carbon interactions can be
neglected [13]. However, in the cases of the cementite
formation (i.e., in case of pearlite and at later stages of
bainite transformations) the carbon concentration
increases essentially (up to с = 0.25); the carbon-carbon
interactions must be taken into account in this case.

Dependences of the energy density g(c/a) on
tetragonal distortion calculated according to the for-
mulas (16), (17) are shown in Fig. 9a. One can see that
γ-Fe is stable in paramagnetic state but it looses its sta-
bility with respect to tetragonal (Bain) deformation
when becoming ferromagnetic. Therefore, the classi-
cal martensitic scenario (through lattice instability
over the entire volume) of the γ → α transformation
can emerge at the overcooling below some tempera-
ture where a strong enough short-range ferromagnetic
order arises in γ-Fe. The doping by carbon does not
change this important feature. Moreover, carbon
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decreases the energy of ferromagnetic γ-Fe, with the
solution energy of the order of –0.2 eV per carbon
atom. It is not surprising, since carbon creates a strong
local ferromagnetic order in PM or AFM γ-Fe [40]. It
is a common wisdom that interstitial impurities
(including carbon) always prefer fcc surrounding com-
pared to bcc, just for geometric reasons [122] (the voids
are larger in fcc lattice than in bcc with the same den-
sity). This is for sure correct, also for carbon in iron and
results in a more pronounced effect of carbon addition
on energy of α-Fe. What is much less trivial is that car-
bon solubility in γ-Fe is sensitive to the magnetic state
being maximal in ferromagnetic surrounding.

5.2. Generalized Ginzburg–Landau Functional 
for the γ–α Transformation in Steel

Bain path energy is important part to construct a
quantitative theory of phase transformations in steel.
The Ginzburg–Landau (G.–L.) functional of free
energy of iron and steel should include also contribu-
tions related to the magnetic, phonon, electron, and
carbon configuration entropy, energy gain during for-
mation of cementite, energy of elastic stresses, and
interphases energies. The G.–L. functional can be
written in the form similar to Eq. (9):

(18)
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where  is local density of free energy
depending on the carbon concentration c, tetragonal
deformation parameter , temperature T, and order
parameter  characterizing the transformation of aus-
tenite to cementite at the point r;  is the elas-
tic energy determined by Eq. (5);  and are the
parameters determining the width of ferrite or cemen-
tite interphase boundary, respectively [86].

Let us first consider the local density of free energy
in the absence of cementite. This situation is typical of
the ferritic (in low-carbon steel at T > Teutec) and mar-
tensitic (i.e. below the temperature MS) transforma-
tions. Using the Hellmann–Feynman theorem and
Eq. (11) one can represent the free-energy density for
the elemental Fe as [12]

(19)

where s0 is the high-temperature limit of the entropy
difference between the fcc and bcc phases, including
phonon contribution;  is a function providing a
gradual switching of the entropy contribution from fcc
to bcc (  in fcc and  in bcc) phase.
According to existing concepts (see, for example,
[123]) the value s0 depends slightly on the temperature
at T > TD, where TD is the Debye temperature (473 K
in bcc and 324 K in fcc phase). It has been chosen such
that the start of the transformation determined by the
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1400 K (curves 3, 3 ') and in paramagnetic states (curves 4, 4 ') and (b) the free energy density as a function of tetragonal deforma-
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0.25

0.05

0.10

0

0.15

0.20

0.7 0.8 0.9 1.0
c/a

(a)

4

3

2

1

4 '

3 '

2 '

1 '

g 
Ω

, e
V

/a
to

m

0.12

0.10

0.14

0.16

0.7 0.8 0.9 1.0
c/a

(b)

4

3

2

1

4 '3 '

2 '

1 '

f Ω
, e

V
/a

to
m



372

PHYSICS OF METALS AND METALLOGRAPHY  Vol. 118  No. 4  2017

RAZUMOV et al.

condition  agrees with the
experimental value for elemental Fe, T0 = 1184 K. This
gives us the value s0 = –0.19k, quite close to the exper-
iment [124].

The temperature dependence of the energy
 and free energy difference
 for the pure Fe agrees well with

the results of CALPHAD [124] within the temperature
range 600—1200 K (see Fig. 10). Herewith, the mag-
netic contribution dominates at T ≤ TC and is compen-
sated essentially by the phonon contribution at T > TC.

The configurational entropy of carbon is found
from the model of ideal solutions, assuming that for
T > 300 K carbon is equally distributed among all
three interstitial sublattices in α-Fe, whereas in γ-Fe
carbon atoms can occupy only quarter of the intersti-
tial positions [88, 102]. As a result, the local density of
free energy can be presented as:

(20)
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where  is the configurational entropy of carbon in the
α(γ) phase, , and Sγ = –k[4cln(4c) +
(1 – 4c)ln(1 – 4c)]/4.

Dependences of the local density of free energy on
tetragonal distortion, calculated according to the for-
mulas (20), are shown in Fig. 9b. It can be seen from a
comparison of Fig. 9a, 9b that the curves  and

 are qualitatively similar, but they differ in the
depth of the minima corresponding to the phases α
and γ. In particular, the minimum corresponding to
the γ phase exists on the curve of  up to the suffi-
ciently low temperature about 400 K. It means that
lattice reconstruction requires an overcome of some
energy barrier at an experimental temperature MS, and
one follows to expect that the martensitic transforma-
tion occurs by the nucleation and growth of an embryo
in this case.

The lattice reconstruction γ → θ leading to cemen-
tite formation is another structural transformation,
which is controlled by carbon diffusion. Herewith, the
order parameter  in Eq.(18) describes a preferred tra-
jectory of the transition  including the Metasta-
ble Intermediate Structure (MIS) [77]. According to
these ideas, the MIS appears in the thin ferromagnetic
layer existing near the ferrite plate. The subsequent
lattice reconstruction MIS → θ occurs by the cooper-
ative displacements mechanism when the local carbon
concentration increases to a threshold value (с ~ 0.18
at T = 0 K). Then the θ phase is saturated with carbon
to the stoichiometric composition of cementite
(Ccem = 0.25). As a result, the lattice coherence is
maintained, whereas the elastic stresses are well com-
pensated at the interface α/θ.

Since the lattice reconstruction is a rather fast pro-
cess (unlike diffusion), γ → θ can be considered as
immediately occurring as soon as the free energies of
austenite and cementite become equal. Then, the local
carbon concentration is a single order parameter char-
acterizing the cementite, and the density of its free
energy [14] can be written as

(21)

where  is the free energy of the pure α-Fe,
 is the free energy of formation of cementite

from the pure compounds (α-Fe and graphite) known
from CALPHAD and ab initio calculations [125, 126],
ccem is the stoichiometric composition of cementite

(ccem = 0.25),  is the concentration dependence
of free energy of cementite [127]. The value of

~ ‒0.02 eV/at is a shift of free energy of
cementite due to magnetization induced by the adja-
cent ferrite plate;  = 0 if an isolated cementite
nucleus is considered.
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5.3. Description of Transformation Kinetics
By using the approach proposed in Ref. [10] the

transformations kinetics can be described by the system
of coupled equations for the atomic displacements (6)
and carbon redistribution (8). The carbon diffusion
coefficient we define as:

(22)

where h(x) is a smoothed Heaviside function, , 
are the carbon concentrations corresponding to the
conditions of paraequilibrium, namely,

 and , respec-
tively. Eq. (22) provides that the carbon diffusion coef-
ficient is equal to , ,  in the bulk of the respec-
tive phases and it takes the intermediate values  at
the interfaces. The ratios of the coefficients 

 are 102 or 103 [128, 129], thus the simulation
with realistic diffusion coefficients is unfeasible, but
the qualitative trends can be derived by choosing a rea-
sonably large value of ratios of the diffusion coeffi-
cients.

6. CONSTRUCTION OF TRANSFORMATIONS 
DIAGRAM OF STEEL

The model proposed in Refs [12–14], which
includes the lattice and magnetic degrees of freedom,
allows to construct the transformation diagram of the
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system Fe-C. This diagram (Fig. 11) includes the
boundaries of two-phase regions γ/(α + γ), γ/(θ + γ)
(lines A3 and Acm respectively, see Fig. 1), as well as
their extensions into metastable region below the
eutectoid temperature Teutec, and also the lines of
instability in respect of the γ → α and γ → θ transitions
(T0 and T1, respectively).

The lines A3 and Acm are defined by the equality of
the chemical potentials of carbon, and the lines T0 and
T1 are determined by the equality of the free energies of
corresponding phases at a fixed carbon concentration:

(23)
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where  are the free energy density of the α(γ, θ)
phases, wherein  are determined by the Eq. (20) at

 =  = 0 in the γ phase and  =  =  in the
α phase, respectively, and  is determined by the
Eq. (21) at . The line TF was constructed by

using the condition  where
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account the formation of cementite [14]. The boundaries of two-phase regions γ/(α + γ), γ/(θ + γ) (lines A3 and Acm, respectively)
with their metastable extensions and the curves of paraequilibrium γ/α, γ/θ (T0 and T1 respectively) are calculated.
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tration; and the line MS (the start of martensitic transfor-
mation) is defined by the disappearance of the barrier on
the Bain deformation path,  The
line A1 is close to a zero carbon concentration and is
not presented here. The transformation diagram at a
low carbon concentration (Fig. 11a), without the for-
mation of cementite, was constructed in Ref. [13] and
at a high carbon concentration (Fig. 11b) discussed in
Ref. [14].

Let us first consider an expected qualitative picture
of the ferritic and martensitic transformation scenarios
in low- and medium-carbon steel [13]. At a low
enough overcooling below the temperature А3 the fer-
rite transformation proceeds slowly, since its driving
force is small. The nucleation of ferrite as a result of
thermal f luctuations is scarcely probable, because the
critical size of nucleus (determined by the ratio of sur-
face energy to the bulk energy gain) is very large. This
is more likely at the grain boundaries where the chem-
ical potential of carbon is changed. Herewith, the
growth rate of ferrite is limited by carbon diffusion in
the γ phase in this case, because the energy of the
α phase without carbon is higher than the energy of
the γ phase with an initial composition. In the case
T ≤ TF the ferrite nucleus can grow even if the compo-
sition of the γ phase remains unchanged and the
growth rate of ferrite accelerates essentially.

A further decrease of temperature results in a slow-
down of carbon diffusion and enhancement of the
transformation driving force. At intermediate tem-
peratures, a crucial role in determining of the start of
transformation is played by the temperature of par-
aequilibrium T0 (see formula (24)), below which the
free energy density of the α phase is less than the free
energy density of the γ phase with the same carbon
concentration. Temperature T0 was introduced in Ref.
[21] as a pre-condition for the start of bainite transfor-
mation. Since diffusion is slower than the shear trans-
formation [4, 21], there is no redistribution of carbon
between the α and γ phases during the growth of
α phase plates. In low-carbon steels the relation
Teutec < T < T0 is possible, when the shear lattice
reconstruction is realized in the ferrite region of the
transformations diagram. The corresponding transfor-
mation scenario can be interpreted as acicular ferrite,
which is realized by displacive mechanism [20]. As can
be seen in Fig. 11a, the calculated value of A3 and T0

agrees well with the known experimental quantity 
and T0Z [16, 49].

The condition  correspond-
ing to the disappearance of the barrier on the Bain
deformation path is attained by quenching of the
γ phase to the temperature MS where ferromagnetic
short range order in the γ phase becomes important.
Below this temperature the absolute lattice instability
of the γ phase should take place, and the obtained

∂ ∂ =2 2( , , ) 0.t tf e c T e

exp
3A

( )∂ ∂ =2 2, , 0t tf e c T e

martensite can be called as the athermal one. It can be
seen that the temperature MS found in this way is actu-
ally lower than the experimental value. However,
according to the concept of isothermal martensitic
transformation [22–25] the condition of the marten-
site start may be taken as , where
parameter  = 0.04 is chosen by fitting to the experi-
ment for pure Fe [18]. The temperature MS' deter-
mined in this way agrees well with the experiment in a
broad interval of carbon concentrations.

The possibility of overcooling of austenite to the
liquid nitrogen temperature, with the formation of
martensite only during the subsequent heating, was
first discovered in Ref. [22]. This observation clearly
points to thermally activated character of the transfor-
mation with a rather small activation energy value of
about 0.04 eV/at [22]. It has been later shown that the
isothermal kinetics changes to an athermal one in
some Fe-based alloys at overcooling below some crit-
ical temperature [2]. The avoiding of discussion of this
problem can lead to some kind of misunderstanding.
For example, the athermal martensite was in focus of
the model used in Ref. [10], whereas the kinetics of the
nucleation and growth of isothermal martensite was
investigated in Ref. [11].

The transformations diagram shown in Fig. 11b
takes in addition into account the formation of cemen-
tite (for details of parameterization see Ref. [14]). The
line Acm is the boundary of the two-phase region γ + θ.
The intersection of A3 and Acm lines is the eutectoid
point (ceutec,Teutec); below the themperature Teutec the
pearlite transformation (PT) occurs. In accordance
with a traditional point of view, the PT is realized
between the A3 and Acm lines extrapolated into a T <
Teutec region (“Hultgren extrapolation” [130]), where
the simultaneous nucleation of α and θ from the initial
γ phase is possible (the possibility of PT outside of
Hultgren extrapolation is also discussed [131]). The
line Acm intersects also the paraequilibrium line T0, so
the different transformation kinetics in the bainitic
region above and below Acm can be expected. This may
be relevant to the formation of several microstructures
below the line T0, such as acicular ferrite and various
morphologies of bainite. At last, the line T1 describing
the start condition of the γ → θ transformation lies in
the region of high carbon concentration (c ~ 0.20),
which causes a problem in describing the nucleation of
cementite. The possible mechanism of facilitation of
cementite formation due to local magnetization and
appearance of the intermediate state (MIS) near the
boundary of ferrite plate is discussed in Section 7.2.

To conclude this section, it should be stressed that
the curves A3, Acm, T0, T1, TF do not depend on the
energy relief along the Bain path and are determined
only by the terminal values . On the contrary,
the martensitic curves MS and MS’ depend on the
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transformation energetics at intermediate deformation
. For the carbon concentration under consideration

the magnetic order effects in γ-Fe are negligible, for
the temperatures above T ~ 400 K. Therefore, the
transformations diagram is determined, first of all, by
the evolution of magnetic state in α-Fe. In particular,
the γ → α transition turns out to be possible above
Curie temperature (  ≈ 1043 K) in pure iron due to
the short-range ferromagnetic order in α-Fe. The
short range magnetic order in γ-Fe becomes important
at T ≈ 400 K, which determines the start temperature
of the athermal martensitic transformation MS devel-
oping via the lattice instability. Thus, the temperature
dependence of magnetic short-range order is the key
factor determining the diversity of phase transforma-
tions in iron and steel. The closeness of the Curie tem-
perature in α-Fe to the temperature of structural
transformation is not accidental, but is related to the
essence of phase transformations in iron and steel.

7. MODELING OF THE PHASE 
TRANSFORMATION KINETICS

The phase diagram discussed above determines the
conditions of the start of phase transformations and
the fraction of a new phase at large times. However, it
does not allow to understand the intermediate stages
of transformation and features of microstructure for-
mation. Namely, the microstructure formed in the
intermediate stages of the transformation is a matter of
the greatest interest to achieve desirable properties.

7.1. Athermal and Isothermal 
Martensite Transformation

Phase-field simulation of transformation kinetics
in the framework of proposed model, i.e. numerical
solution of Eqs. (6), (8) with G.–L. functional (18), is
required for the analysis of a martensitic transforma-
tion (MT). Herewith, the shear transformation occurs
with a velocity ~103 m/sec, i.e. in a time much shorter
than the characteristic diffusion times. Thus, the car-
bon distribution can be considered as a “frozen”, and
the Eq. (8) can be neglected. The modeling of MT
kinetics was carried out on a square grid by the classi-

te

CT α

cal Runge–Kutta method with periodic boundary
conditions [12].

As was mentioned above, the formation of marten-
site does not require thermal activation at T < MS,
while the appearance of isothermal martensite is
expected in the temperature range MS < T < MS' after
aging as a result of thermal f luctuations. Therefore,
the simulation of MT must take into account the ther-
mal lattice vibrations. The lattice temperature was
introduced in the framework of microcanonical
ensemble. First, the system is heated to a high tem-
perature (Т = 1200 K) by the small random forces

(r,t) (the corresponding term is appended to the right
side of Eq. (6) leading to the Gibbs distribution of
atomic displacements). Then the random forces are
shut down and the equilibrium state is attained after
aging at this temperature. Finally, the lattice tempera-
ture is reduced to the desired value from the interval
400–1000 K by rescaling of velocity field. Herewith,
the estimation of lattice temperature was carried out
by calculation of the average kinetic energy per degree
of freedom, , where  is the aver-
age square of the velocity over the calculation area.
The spin temperature was chosen in the region of sta-
bility of the γ phase during these preparation proce-
dures and then it switches to the value of lattice tem-
perature.

The typical patterns of the order parameter distri-
bution  depending on time are shown in Fig. 12–14.
Black and white colors correspond to the two possible
values of order parameters for the α phase in two-
dimensional case, , i.e. to the two mutually
orthogonal directions of the Bain deformation. Time

is given in dimensionless units,  At
significant overcooling (T < MS) the homogeneous
transition is realized by development of all f luctua-
tions inherited upon cooling from a high temperature
state (see Fig. 12). In the temperature range MS < T <
MS2 the system remains stable with respect to small
f luctuations, and the phase transformation starts with
the appearance of critical f luctuation after the incuba-
tion period (a few nanoseconds) and it is realized by
replication of twinned plates (see Fig. 13). The similar
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Fig. 12. Kinetics of athermal martensitic transformation; T = 400 K, c = 0 [12].
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mechanism was early observed in Ref. [11] at phase
field simulation of MT in the system with an α-phase
nucleus initially introduced in it. The difference of ori-
entation of the neighboring domains reduces the elas-
tic energy of the system, but raises its surface energy.
As a result, the characteristic size of domain is deter-
mined by minimization of the sum of elastic and sur-
face contribution to the total energy. The temperature
MS2 is defined in this case as a result of phase-field
simulations in 2D model and it does not necessarily
coincide with MS', which was early obtained (see
Fig. 11a) from the fitting to experimental data. Never-
theless, these temperatures are close; the values of MS2
obtained from simulations are designated by the solid
circles in Fig. 11a.

The elastic stresses play a crucial role in martensite
transformation. As it is well known, the components of
the deformations tensor are coupled to each other by
Saint-Venant’s compatibility equations (4). It leads to
an additional contribution to the G.–L. functional
and results in effective long-range interactions in dis-
tribution of order parameters, which play a crucial role
in pattern formation upon the phase transition [9–11].

As was shown in [111–114], the relaxation of elastic
stresses during the transformation is an important fac-
tor determining the martensite morphology. The main
relaxation channel is the plastic deformation arising
under local stresses exceeding the yield stress. A con-
sequent description of the plastic deformation requires
an essential complication of the model by including

additional order parameters. Instead, in Ref. [13] the
plastic deformation has been taken into account in a
phenomenological way. Since the contribution of the
elastic stresses to the Ginzburg-Landau free energy
functional is determined by the coefficients Av, As, the
real values of these parameters were replaced by some
effective, temperature-dependent values, 0 <  <
Av, 0 <  < As. The thermal lattice f luctuations can
not be taken into account in this scheme, since the
renormalization of Av, As leads to the incorrect change
of f luctuations amplitude, affecting the start condition
of homogeneous transition and the morphology of
martensite. This approach can be considered as rea-
sonable for the stage of growth of isothermal marten-
site. It provides the fast stress relaxation and the lattice
remains coherent during the whole transformation
process.

Figure 14 shows the MT kinetics when choosing
parameters   in such a way that the average
elastic energy over the sample is equal to the experi-
mental value of the stored energy in martensite,
0.007 eV/at [132] (i.e. ~10% from the nominal values).
Herewith, the heterogeneous nucleation is provided
by additional contribution to the free energy near grain
boundary (see details in Ref. [13]). In this case the
martensite is formed as a lenticular colony of twinned
plates.

Thus, the proposed model [12, 13] reveals two
types of MT kinetics, athermal and isothermal at dif-
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Fig. 13. Kinetics of isothermal martensitic transformation; T = 800 K, c = 0 [12].
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Fig. 14. Heterogeneous nucleation of isothermal martensite, with taking into account the relaxation of elastic stresses; T = 700 K,
c = 0.01 [13].
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ferent temperatures, in accordance with existing con-
cepts [2, 22–25, 133]. The experimentally known line
of the start of MT [18] corresponds to isothermal MT,
whereas the athermal scenario is more hypothetical
and it can develop due to short-range magnetic order
in the γ phase.

7.2. Kinetics of Pearlite Transformation. 
Globular and Lamellar Structures

The pearlite morphology is similar to that formed
during discontinuous decomposition [134–136],
when the supersatured parent phase  decomposes
into a two-phase structure , where the
phases  and  have the same crystal structure, but
with different composition. The model of the spinodal
decomposition (SD) provoked by grain boundaries
was proposed for explanation of this phenomenon
[137]. However, the SD kinetics is not applicable to
PT, because the mixing energy of carbon in γ-Fe is
positive (v > 0) [57, 58], which prevents the carbon
inhomogeneity formation in the γ phase. PT is also
similar to the eutectic colony growth in the absence of
a temperature gradient [108, 109], a process that pre-
supposes a realization of the condition of the solid
solution decomposition. As was shown recently [14],
the lamellar structures can arise by an autocatalytic
mechanism below the critical temperature even if the
parent phase (austenite) is stable with respect to
decomposition (v > 0) and the transition from lamel-
lar structure to globular one takes place with tempera-
ture increase.

First of all, let us discuss the possible transforma-
tion scenarios of decomposition by using schematic
Fig. 15 where free energies of involved phases at differ-
ent temperatures are presented. At a high temperature
the stable equilibria of α/γ or γ/θ exist in the system
and ferrite or cementite will precipitate from a γ matrix
in different concentration intervals (curve a). At a
lower temperature, T < Teutec, the γ phase is metastable
with respect to the decomposition α + γ or γ + θ and,
in addition, the stable equilibrium of α/θ appears
(curve b). The uncorrelated nucleation and growth of
the α and θ phases inside a γ- phase matrix are
expected in this case.

A further decrease in temperature leads to the loss
of one or both metastable equilibria at a preservation
of thermodynamic equilibrium between the α and θ
phases (curves c and d). As a result, the change in the
decomposition kinetics of austenite is expected,
because the cooperative formation of the α and θ
phases becomes preferable. As was shown in Ref. [14],
in this case the pearlite colony can emerge by some
kind of autocatalytic mechanism when the appearance
of one of the phases (α or θ) stimulates the nucleation
of the next one, and the lamellar or globular structure
can form in dependence of the temperature. The sim-
ilar autocatalytic decomposition scenario was earlier

α 0

→ +α α β0

α 0 α

considered for the system with the metastable phase and
a symmetric phase diagram, and the possibility of such a
mechanism of PT was discussed in Refs. [138, 139].

A key component of the model PT is the start con-
dition of the cementite formation. Indeed, according
to the transformation diagram in Fig. 11b, when a car-
bon concentration increases the metastable equilib-
rium of α/γ is achieved before then the cementite for-
mation is realized, since the line A3 goes much left of
T1. To solve this problem, in Ref. [14] it was accepted
that cementite nucleation is facilitated in the thin fer-
romagnetic region near the ferrite plate where so
called the Metastable Intermediate Structure (MIS)
[77] exists. As a result, the line T1 is shifted to the left
by the value  ~ 0.05 and crosses the line A3 at
approximately 15% carbon. (see Fig. 16). Thus, the
occurrence of MIS [77], which is a precursor of
cementite formation, is very important for the kinetics
of PT.

On the transformation diagram in Fig. 16 there can
be identified three regions I–III where different PT
scenarios can be realized in dependence of tempera-
ture. These regions are determined by intersection
points of the lines A3 and Acm with  and T0 and
correspond to free energies curves b, c, d in the Fig. 15,
respectively.

The formation of the regular lamellar pearlite by auto-
catalytic mechanism is to be expected in region III,
wherein the instability of austenite in respect to the
γ → α + θ decomposition appears stepwise with
decreasing temperature. This agrees with the experi-
ment [3]; the temperature dependences of the pearlite
colony nucleation rate, growth rate, and effective
transformation rate (see Fig. 17) have a maximum near
the temperature 820 K, which indicates the thermody-
namic instability of austenite. Moreover, the pearlite

Δ boundc
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Fig. 15. Variants of phase equilibrium in the system with
the triple-well potential f(c).
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nucleation rate (in contrast to the growth rate) is close
to zero at  and changes abruptly at

 820 K (similar results were found earlier in
Refs. [53, 66]). So, the nucleation rate appears very
slow above 820 K, while existing pearlite colony can
grow. Therefore, the temperature T ~ 820 K can be
considered as an experimental estimation of the value

 in Fig. 16.
Since PT is realized above the paraequilibrium

temperature (T > T0), it is controlled by carbon diffu-
sion. In this case Eq. (8) can be solved under the
assumption that the lattice reconstruction is a rather
fast process in comparison with the characteristic dif-
fusion times. In this case, the fast variables ,  can be
eliminated by minimization of the local free energy
density over these ones, so 
In result, the G.–L. functional have a form:

(25)

where  is the local density of the free
energy of austenite (ferrite, cementite). Since the α
and θ phases in pearlite colonies are usually conju-
gated with small mismatch and the coherency is lost
mostly on the transformation front [140] the elastic
energy contribution  was neglected in [14].

Figure 18 shows the typical evolution of transfor-
mation patterns arising at overcooling of austenite into
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the region III of the transformation diagram. Carbon
is pushed out from an embryo of ferrite, because its
solubility in the α phase is much lower than in the
γ phase. Since c(A3) > c( ) (see Fig. 16, the
region III), the local metastable phase equilibrium of
α/γ can not be reached, and the formation of cemen-
tite takes place. The growth of the arising cementite
nucleus leads to depletion of carbon in surrounding aus-
tenite. Since c(Acm) < c(T0) (see Fig. 16, the region III),
the local metastable phase equilibrium of θ/γ also can
not be reached, and the new ferrite layer is formed
near the θ phase. The process described above is
repeated, so the corresponding mechanism can be
considered as autocatalytic. Phase-field simulation
shows that a fine lamellar structure is formed in this
case and the movement of the front of pearlite colony is
accompanied by increasing its transverse size. As a result,
the pearlite colony becomes of a fan-type shape in accor-
dance with experiment [3, 53, 74]. Note that a similar
fan-type pearlite structure appears, if we start from one
cementite embryo instead of the case of ferrite.

Figure 19 shows the decomposition kinetics in the
case, where the metastable equilibrium of the γ phase
with cementite exists in the region II, but its equilib-
rium with ferrite is impossible, i.e.  In this
case the PT starts only with ferrite embryos, since they
alone can not be in equilibrium with austenite. The
condition of autocatalytic multiplication of lamellae is
violated and the phase-field simulation demonstrates
the relevance of globular structure. As in the previous
case, carbon is pushed out from the embryo of ferrite
and the nucleation of cementite takes place. However,
in this case the line Acm is achieved before the critical
concentration c(T0) does, so that the metastable phase
equilibrium of γ/θ is realized, and the new ferritic layer
does not appear. As a result, the other scenario of

bound
1T
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p p .T T

Fig. 16. Transformation diagram of carbon steel taken into
account the facilitation of cementite formation near the
ferrite boundary. The temperature regions I–III are deter-
mined by intersection points of the two phase region
boundaries A3 and Acm with the paraequilibrium lines
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transformation takes place, which results in numerous
small cementite precipitates in the single ferritic
matrix.

In the region I in Fig. 16 austenite is decomposed
by conventional nucleation-and-growth mechanism,
as was discussed in Ref. [13], and we do not show cor-
responding pictures here. Carbon is pushed out from
the ferrite embryo and its concentration near the fer-
rite interface reaches the value determined by A3 curve.

Since c(A3) < c( ), the metastable phase equilib-
rium of α/γ is reached, and the formation of cementite
does not occur in this case. And vice versa, if we start
from one cementite embryo, the metastable phase
equilibrium of γ/θ is realized and ferrite does not
occur because c(Acm) > c(T0).

Thus, the two possible scenarios of pearlite trans-
formation, lamellar and globular, are possible within
the model presented in [14], and second one is real-
ized at a higher temperature. The autocatalytic
decomposition described above differs from the well-
known spinodal decomposition (SD) by the fact that
the γ phase loses its stability in respect to large compo-
sition deviations (near the existing precipitates), so
that decomposition is realized by the scenario of colo-
nies growth, while during SD the homogeneous insta-

bound
1T

bility of solid solution in respect to small composi-
tional f luctuations develops in the bulk.

The nucleation of globular pearlite, also known as
Divorced Eutectoid Transformation (DET), attracts
an essential interest [71–75]. This state is usually pro-
duced by the heating of the existing lamellar pearlite
above the temperature Teutec until the cementite is
almost completely dissolved, and then the cooling
below the temperature Teutec is carried out. As a result,
the observed PT morphologies is similar to the Fig. 19,
wherein the numerous precipitations of cementite are
immersed in the single α matrix with a pronounced
transformation front. According to the conventional
point of view, the cementite nucleuses are storing in
the γ matrix after the heating and grow upon a subse-
quent small overcooling below Teutec, while the nucle-
ation of lamellar structure does not occur before com-
pletion of DET. This scenario is consistent with the
transformation in the region I (see Fig. 16). Moreover,
in Ref. [72] it was pointed out that the globular pearlite
is realized in hypoeutectoid steels even at overcooling
from an almost homogeneous state, thus the number
of cementite globules after the DET is much larger
than the number of potential nuclei. In the context of
presented phase-field simulations (Fig. 19), this fact
may indicate that the kinetics of globular pearlite
includes the autocatalytic nucleation of the new

Fig. 18. Kinetics of lamellar structure growth from a nucleus placed on the grain boundaries junctions (ferrite nucleus on the bot-
tom left and cementite nucleus on the upper right are indicated by arrows); T = 675 K, c0 = 0.06,  = 1.5 eV/at [14]. The carbon
concentration is indicated by the gray scale; the black color corresponds to ferrite, and the white to cementite. The time is given

in dimensionless units,  The embryos of ferrite and cementite are introduced into the initial state, lower left and upper
right corner of the calculation square, respectively.
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Fig. 19. Kinetics of globular colony growth from a ferrite nucleus; T = 800 K, c0 = 0.06,  = 1.5 eV/at [14].
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cementite globules, as it occurs in the region II of
transformation diagram.

Variation of the parameters leads to some changes
of the precipitates morphology. We only discuss the
general trends observed in the calculations. The inter-
lamellar spacing decreases with the decreasing of tem-
perature T in accordance with known classical con-
cepts [3]. The ratio of the temperatures ,  can

be changed by varying of the parameters  and
. The tendency to the lamellar structure formation

increases with increasing  (see Fig. 20), however,
the morphology of lamellae differs from the conven-
tional pearlitic structure (the concentric layers instead
of radial strips are observed). In our opinion, the elas-
tic stresses can play an essential role in the orientation
of lamellae, which is not taken into account in the sim-
plified G.–L. functional, Eq. (25).

The qualitative conclusions presented here are
quite general and they can be attributed to other eutec-
toid systems, for example, to the alloy Zn–Al [50],
where the lamellar structures are also formed. In the
same time, the proposed model does not explain the
appearance of a small number of colonies of coarse

(1)
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pT

εFM(PM)
γ

v γ

v γ

lamellar pearlite, which is observed in the temperature
range  [3], i.e. together with DET.
So, additional factors should be taken into account
(such as incompatibility elastic stresses) to provide
more reliable results of calculations.

7.3. Scenarios of Ferrite 
and Intermediate Transformations

The ferrite transformation (FT) starts just after the
cooling below the line A3 and results in the appearance
of almost pure bcc-iron (α phase). Because driving
force in this case is rather small, the transformation
usually starts at grain boundaries where nucleation is
facilitated. Since carbon solubility in the α phase is
very small, the carbon is pushed out into the γ matrix,
which results in the appearance of the regions depleted
of or enriched in carbon. FT is a diffusion-controlled
phase transformation, so that nucleus of the α phase
can not grow without carbon redistribution in this
case. The temperature region of diffusion controlled
growth of the α phase is T0 < T < A3 (see Fig. 11b) and
the condition where ferrite can grow without cemen-
tite formation is T > Teutec.

It is necessary to pay attention to the two important
features of FT. At first, the gain of free energy in the
formation of ferrite is small (see Fig. 9b), therefore the
realization of FT requires almost complete relaxation
of elastic stresses. Secondly, FT is even observed
experimentally above the Curie temperature, T > TC,
thus it is due to short-range magnetic order in the
absence of long-range order.

Figure 21 shows the kinetics of FT when the solu-
tion of the complete set of equations for shear-diffu-
sion transformations is carried out. The upper and
lower rows of images correspond to the shear order
parameter and carbon concentration, respectively.

Time is given in dimensionless units, .
It was supposed that the elastic stresses are absent,

=  = 0, and the additional contribution to the
free energy exists near the grain triple junctions and
boundaries (see [13] for details). The growing polygo-

< <exp
p eutecT T T

( )→ �

2t t J L
α

ρ

v
effA eff

sA

Fig. 20. Kinetics of lamellar structure growth from a nucleus of ferrite; T = 675 K, c0 = 0.06,  = 2 eV/at.

0 0.07 0.14 0.19 0.23

v γ

Fig. 21. Kinetics of formation of polygonal ferrite at triple
grain junctions, T = 1000 K, c0 = 0.01 [13].
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nal ferrite precipitates, surrounded by a carbon shell,
are observed in accordance with experiments [6].

In the temperature range MS' < T < T0 the model
demonstrates several possible scenarios. As was noted
in the discussion of a transformation diagram, at tem-
peratures T < T0 the lattice reconstruction γ → α can
occur even if homogeneous carbon distribution is
retained. However, the diagram (Fig. 11) was con-
structed without taking into account the contribution
of elastic stresses to the free energy. As was discussed
in [13], the nominal contribution of elastic stresses is
very large, but it decreases due to plastic deformation.
The effective values   can be roughly esti-
mated from experimental data on the residual stresses
[4]. As a result, the start temperature of shear transfor-
mation decreases, Tstart <T0. Therefore, transforma-
tion scenario in the temperature range MS’ < T < T0
depends on the degree of undercooling. Here we
restrict ourselves to discussion of the scenarios of fer-
rite nucleation and growth in the presence of elastic
stresses, without the cementite formation, and we call
them scenarios of intermediate transformation.

At elevated temperatures the transformation is con-
trolled by carbon diffusion, as in the case of ferrite for-
mation, but the precipitate of α phase acquires a plate
form, like bainitic or Widmanstatten ferrite (Fig. 22).
At lower temperatures the ferrite nucleus appears and
grows by shear mechanism, up to some critical size,
determined by increasing elastic stresses (Fig. 23). In
this case the depletion of carbon of an α plate and its
diffusive growth occurs in the second stage. Besides, at
the same temperatures, but at a large amplitude of the
initial perturbation on GB, the sheaf of ferrite plates
can be formed, in which the elastic stresses produced
by tetragonal deformations are compensated (Fig. 24).
For large times, the carbon accumulates at the bound-
aries of ferrite plates, where its concentration reaches
the big values, and cementite nuclei can appear.

The scenarios of intermediate transformation
shown in Figs. 22–24 can be associated with upper
and lower bainite. Indeed, the opinion that upper
bainite emerges by diffusion and lower bainite by shear
mechanism is widespread [19]. However, the stopping
of growth of plates in the presented calculation is due
to the boundary conditions, whereas the stopping of
bainitic plate growth is explained by lattice coherency
disturbance on the boundary γ/α after the plastic
deformation [4]. Herewith, all subunits in the bainite
colony have the same orientation; this is problematic
without coherency disturbance on the colony front.

Thus, the proposed model describes the main
peculiarities of ferrite and some features of initial
stages of bainite transformations. The consistent
model of bainite transformation should take into
account the plastic deformation more correctly,
including the loss of lattice coherency at the γ/α

v
eff ,A eff

sA

Fig. 22. Diffusion-controlled nucleation and growth of
bainitic ferrite plate with taking into account the elastic
stresses, T = 850 K, c0 = 0.01.
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Fig. 23. Shear-controlled nucleation and growth of bain-
itic ferrite plate with taking into account the elastic
stresses, T = 800 K, c0 = 0.01.
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Fig. 24. Shear-controlled nucleation and growth of the
sheaf of bainitic ferrite plates, T = 800 K, c0 = 0.01 [13].
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boundary when the critical size of ferrite subunits is
reached.

8. EFFECT OF EXTERNAL MAGNETIC FIELD 
ON THE START OF PHASE 

TRANSFORMATIONS
The effect of powerful pulsed magnetic field on the

martensitic transformation (MT) in steel was first dis-
covered in Ref. [141]. In Ref. [142, 143] it was shown
that the magnetic field linearly shifts the start tem-
perature of MT (  increases by about 0.5 degree in
the field H = 1 kOe). In Ref. [144, 145] it has been
concluded that the pulsed magnetic fields do not
affect the isothermal MT, but can provoke the ather-
mal MT, leading to the specific distinctive morphology
of martensitic crystals. This was explained as follows: the
rate of athermal MT is close to the impulse duration
(~10–3 s), while the rate of isothermal MT is much less
(ten minutes), so that isothermal MT can be realized
only in a powerful static field; such fields were not
available in Ref. [144, 145]. In Ref. [146] it has been
shown that the static field shifts the start temperature
of isothermal MT. Futher investigation has pointed
out that the static magnetic field 50kOe also acceler-
ates the pearlite and bainite transformations, herewith
the start temperature shifts by 10 K [145]. The interest
to the effect of external magnetic field on the kinetics
of diffusion controlled transformations increases in
recent years [147–150]. In particular, it was found that
the magnetic field enhances the mass fraction of
proeutectoid ferrite and influences the morphology of
cementite precipitates.

exp
SM

To explain the effect of magnetic field on MT, the
Krivoglaz–Sadovsky equation was proposed
[145, 151]. According to this formula, the magnetic
field shifts the thermodynamic equilibrium to the for-
mation of a magnetic α phase

(26)
where T0 is the start temperature of the γ → α transfor-
mation,   are the volume and the magnetization
of the α phase, H is the magnetic field, q is the heat of
transformation. Also, the formula for the shifting of
solubility limits was obtained from the condition of
equality of chemical potentials of the phases:

(27)

where ,  are solubility limits in the magnetic
field and without it.

It should be noted that the Eqs. (26), (27) corre-
spond to the lines T0, A3 (see Fig. 11) determined by
equilibrium conditions, while the lines MS, MS' are
related to the barrier on the Bain path. Thus, formu-
las (26), (27) can not be used for the analysis of a mar-
tensitic transformation, contrary to the popular
belief. According to the model [13], the athermal MT
is due to the appearance of short-range magnetic
order in the γ phase, and isothermal MT depends on
the energy of some intermediate state near the γ phase
on the Bain path.

The transformation diagram in the case of the pres-
ence of external magnetic field is presented in Fig. 25.
Here we used the general formulas (13)–(15) for the
spin correlation function. The external magnetic field
increases the degree of order near the Curie tempera-
ture, which results in the increase of the spin correlator
magnitude and the shift of lines of the transformation
diagram. Herewith, the change of the magnitude of
the correlator depends on a tetragonal deformation,

(28)

where  is the change of correlator in γ(α)
phases, and  is the function characterizing the
magnetic susceptibility in intermediate lattice states.
Figure 25 shows the transformation diagram “under”
the field H = 150 kOe in the case of 
(curves A3(1), T0(1), MS(1), MS'(1)) and 
(curves A3(2), T0(2), MS(2), MS'(2)). One can see that the
lines A3, T0 do not depend on the choice of ,
whereas the lines MS, MS' are very sensitive to this.

Thus, the proposed model allow us to find the
shifts of the lines A3, T0 in agreement with Refs. [145],
and it also shows that the formulas (26), (27) can not
be used for the lines MS, MS'. The construction of
these lines under external magnetic field is to be a
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Fig. 25. The transformation diagram “under” external
magnetic field, H = 150 kOe. The lines A3(1), T0(1), MS(1),
MS'(1) and A3(2), T0(2), MS(2), MS'(2) correspond to the

choice of  or , respectively.
The dotted lines A3, T0, MS, MS' correspond to the absence
of external field.
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separate problem and requires a justification of the
form of .

9. CONCLUSIONS AND OUTLOOK
The problem of the phase transformations and

microstructure formation in iron and steel is in scope
of interest for a long time and is actively discussed by
now [1–6, 19, 22]. Nevertheless, despite great efforts,
the number of important questions are still under
debates. One of the reasons for this is the complexity
of the phase transformations in iron based alloys that
involve both lattice and magnetic degrees of freedom,
as well the carbon redistribution, which also plays an
important role. Besides, the processes of transforma-
tion involve several spatial scale levels, from micro-
scopic (atomistic) to macroscopic (at the level of the
grain size).

Starting with a conceptual work by Zener [37], it is
believed that magnetism plays a crucial role in the
phase transformations in iron and steels. However, all
early proposed models are too phenomenological, so
their correct choice is impossible. In this review we
have presented recent progress in understanding of
microscopic mechanisms of phase transformations in
iron and steel. This progress was possible, on the one
hand, due to the widely using of ab initio methods for
calculation of the electronic structure and total energy
in different structural and magnetic states of iron [7, 8,
35, 36, 58, 77, 120, 126, 152], and, on the other hand,
due to applications of the atomistic simulations within
the phase-field approach [81] to the transformations
kinetics [9–14, 48, 74, 75, 111, 112].

The rapid development of computing technology
offers the prospect for the research of realistic trans-
formations kinetics in 3D models depending on cool-
ing rate and concentrations of alloying elements. In
this connection the task of constructing the consistent
ab initio based model of phase transformations in
steel, describing the shear-diffusion transformation
kinetics and taking into account the magnetic degree
of freedom is very relevant.

The recently proposed model [12–14] agrees well
with the known experimental data and predicts the
start temperatures of different transformations (ferrite,
pearlite, bainite, martensite). It was shown that the
magnetism provides the main contribution to the
change of free energy at the γ → α transformation.
Therefore, the increase of short-range magnetic order
plays a key role in the change of transformation sce-
narios (from ferrite to martensite) under cooling.
Phase-field simulation carried out in the framework of
the proposed model reproduces the typical precipi-
tates morphology, including ferrite, twinned marten-
site, and pearlite colonies.

The ferrite transformation starts at a temperature
below A3 due to the short-range magnetic order (with
a possible absence of long-range order) and requires

( )sf ϕ
the essential relaxation of the elastic stresses. The
pearlite transformation results in the formation of a
regular structure due to autocatalytic mechanism,
which is realized in the absence of thermodynamic
equilibrium between initial austenite and transforma-
tion products (ferrite and cementite). Two types of
autocatalysis were revealed leading to a lamellar or
globular pearlite structure depending on the tempera-
ture. Also two types of intermediate (bainite) transfor-
mations were observed below the paraequilibrium
temperature T0 in phase-field modeling. These are
diffusion and shear-controlled transformations, which
can be associated with upper and lower bainite,
respectively. The experimental curve of the start of
martensitic transformation (MT) corresponds to the
conception of isothermal martensite, whereas the
classical (athermal) scenario of MT is due to the short-
range magnetic order in γ-Fe, which arises at lower
temperature. The model allows us to consider an effect
of external magnetic field on the curves of the start of
ferritic and bainitic transformations in agreement with
the Krivoglaz–Sadovsky concept [145] and reveals
inapplicability of this concept to a martensitic trans-
formation.

Despite the significant progress in recent years, a
number of problems remain unresolved, including
peculiarities of bainitic microstructure with taking
into account the cementite formation, the role of elas-
tic stresses, and their plastic relaxation in growth
kinetics of the pearlite and bainite colonies, the effect
of alloying elements on the thermodynamics and
kinetics of phase transformations. Also the dimension
of model (2D or 3D) is essential for the kinetics
[28, 29, 87, 112], so that more realistic simulations
should be based on 3D models.

According to modern views [4] the role of plastic
deformation increases with temperature; this is a prin-
cipal channel of elastic energy relaxation in the case of
ferrite transformation, while the relaxation of elastic
energy in the case of martensitic transformation is pro-
vided by twinning of plates. Herewith, plastic defor-
mation causes the bainite morphology, since the char-
acteristic size of the bainitic subunits is determined by
the start condition of plastic deformation, disturbing
the lattice coherency at the interface γ/α.

Thus, the essential contours of an ab initio based
theory of phase transformations in iron and steel are
formed. The further development of the theory and its
applications to complex alloyed steels at various cool-
ing regimes should lead to practical applications that
are significant for metallurgical production.

The research was carried out within the state
assignment of FASO of Russia (theme “Magnet”
no. 01201463328).
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