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Abstract—A hypothesis about the existence of a pseudospinodal separating the homogeneous and heteroge-
neous nucleation regions in the phase diagram of a binary alloy has been proposed on the basis of the results
obtained from the Monte Carlo simulation of the decomposition in a simple system with a short-range attrac-
tive potential of the impurity atoms.
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1. INTRODUCTION
In the theory of phase transitions in alloys [1, 2],

different types of decomposition kinetics are classified
according to parameters (temperature, composition)
of an alloy in the phase diagram. The solubility limit
(binodal) is determined by the condition of the equal-
ity of the chemical potentials of the phases, whereas
the limit of stability of a homogeneous state (spinodal)
is defined as the boundary of the convex portion of the
concentration dependence of the free energy. Thus,
there is a region of metastable states between the
spinodal and the binodal in the phase diagram, where
the alloy is stable with respect to small f luctuations of
the composition, but undergoes decomposition into
equilibrium phases in the case of the formation of crit-
ical nuclei. The physical reason for the existence of
this region in the phase diagram is the fact that there is
a contribution from the configurational entropy of the
atoms to the free energy of the alloy.

At present, it is considered to be established [3, 4]
that the spinodal is only a theoretical concept. It exists
in the limit of infinitely long-range interactions [5–7],
but, in systems with a short-range potential, thermal
fluctuations provide a smooth transition from the
absolute instability to the regime of nucleation and
growth, so that it is impossible to determine the line
separating these two kinetic regimes. This is evidenced
by the experimental data [8, 9] and the results of the
computer simulation [10, 11].

The process of nucleation near the binodal has
been investigated to a lesser extent. In a number of
research papers, the authors discussed the necessity to
separate the region of metastable states into two subre-
gions. In particular, Binder [5] constructed a sche-
matic phase diagram that included the “classical

nucleation” region (immediately below the binodal)
and the “spinodal nucleation” region (immediately
above the spinodal), even though the transition
between these regions was assumed to be smooth. Ear-
lier [8, 12], the idea of two nucleation regimes was
used to explain the experiments on the scattering of
light in binary liquid mixtures. Patashinskii and Shu-
milo [13] theoretically predicted that there is a third
region between the metastable region and the region of
unstable states in the phase diagram, where the initial
homogeneous state is stable with respect to infinitesi-
mal long-wavelength f luctuations, but transforms into
a heterophase state under the influence of finite ther-
mal f luctuations. The line bounding from above this
region was called the physical spinodal. Kiselev and
Kostyukova [14] obtained a similar line for a single-
component gas in the vicinity of the critical point. It
was noted that this line lies closer to the binodal than
to the theoretical spinodal. Wang and Wood [3, 15]
predicted the existence of a “pseudospinodal” in
binary polymer mixtures, which was experimentally
confirmed by Lefebvre et al. [16] (it should be noted,
however, that we are dealing here with single experi-
ments). The pseudospinodal coincides with the mean-
field spinodal in the limit of infinite molecular weight,
which is mathematically equivalent to the transition to
a long-range potential. The theory proposed by Wang
[3] is valid for a sufficiently large (even though finite)
molecular weight and cannot be extended to alloys
with a short-range potential. The interpretation of the
pseudospinodal is debatable. Wang [3] put forward the
hypothesis that the pseudospinodal separates regions
of physically accessible (observable) and inaccessible
(unobservable) metastable states, because, usually, the
decomposition occurs very rapidly. It remains unclear
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whether the pseudospinodal exists in real alloys with a
short-range interaction. There are no results obtained
from the simulation using the Monte Carlo technique
that would confirm the existence of a pseudospinodal
in any system.

In this paper, based on the results obtained from
the Monte Carlo simulation of the decomposition of
an alloy with a short-range potential, it has been
shown that the hypothesis of the existence of a pseu-
dospinodal in the alloy is justified. The criterion for
the achievement of the pseudospinodal line is the fact
that the incubation period for the formation of a criti-
cal nucleus tends to infinity, which apparently occurs
below the binodal. Therefore, the pseudospinodal
separates the region of possible homogeneous nucle-
ation and the region of possible heterogeneous nucle-
ation.

2. SIMULATION METHOD AND RESULTS

The simulation of the decomposition of an alloy
was performed using a simple scheme of the kinetic
Monte Carlo technique implementing the Kawasaki
dynamics [17] with direct exchange of atoms, which
was tested in our previous studies [18, 19]. For the
Monte Carlo simulation, we chose the effective Cu–
Cu pair potential in the matrix of body-centered cubic
(bcc) Fe. For simplicity, we restricted ourselves to the
potential in the paramagnetic state for the first three
coordination spheres {–7.4, –2.3, –0.3} mRy without
taking into account the deformation, concentration,
and magnetic corrections. This choice does not pro-
vide the true solubility limit of copper in bcc-Fe, but
leads to a simple model that is sufficient for the pur-
poses of the present study. The calculations were car-
ried out for a supercell of 90 × 90 × 90 or 60 × 60 ×
60 unit cells in size with periodic boundary conditions.
As was done in [18, 19], the degree of decomposition
0 < S < 1, which was achieved to a certain point of
time, was calculated from the configuration of atoms
according to the following rule:

(1)

where N is the number of copper atoms in the sample,
 are the occupation numbers for the nearest neigh-

bors around the jth site, Z = 8 is the coordination
number for the nearest neighbors in the bcc lattice,
and Θ(x) is the Heaviside step function. According to
formula (1), the copper atom is considered as belong-
ing to a precipitate, if the local concentration of cop-
per in the region surrounding it is no less than q. Since
it is important to accurately determine the time of the
onset of the decomposition of the alloy, the local cop-
per concentration was taken to be equal to q = 0.25. In
this case, the degree of decomposition (1) is sensitive
to the formation of even small clusters.
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As in the recent study [19], our calculations have
demonstrated the absence of the spinodal as a physi-
cally defined line that separates the region of absolute
instability from the region of nucleation and growth.
With an increase in the temperature, the incubation
period for the onset of the decomposition of the alloy
increases monotonically from very small to very large
values (Fig. 1). At the same time, it has been found out
that, at technically achievable computation times, the
nucleation becomes impossible in the vicinity of a par-
ticular curve in the phase diagram, which can be called
the pseudospinodal (or the limit of stability of a
homogeneous state) and which is significantly differ-
ent from the binodal. This curve was previously calcu-
lated in [18] using the conventional procedure of the
Metropolis Monte Carlo algorithm (with the rear-
rangement of atoms to arbitrary distances) and then
was wrongly identified with the binodal. As a result,
the authors of [18] came to the wrong conclusion that
there is an agreement between the theory and the
experiment for the solubility limit of copper in bcc-Fe.
Therefore, it is necessary to perform a careful analysis
of the question as to whether the limit of stability
appears in our calculations for the reason that suffi-
ciently long computation times are technically
unachievable or this limit is actually a physically
defined line in the phase diagram.

The results of our calculations at a fixed tempera-
ture and with a variation in the average composition of
the alloy are presented in Fig. 2. Curve 1 in this figure
shows the incubation period for the onset of the
decomposition in the homogeneous system, which is
determined from the condition that the degree of
decomposition of the alloy reaches the value of S =
0.05. Curve 2 represents the time of dissolution of a
single precipitate from the two-phase state, where all

Fig. 1. Evolution of the degree of decomposition of the
alloy with the concentration of impurities c = 0.015 at tem-
peratures T = (1) 800, (2) 1000, and (3) 1100 K. The time
is expressed in units of the number of jumps per impurity
atom.
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impurity atoms of the system are located within one
precipitate in the center of the computational region.
Vertical dash-dotted line 3 indicates the equilibrium
concentration of impurity atoms in the matrix
(binodal). For the calculation of the binodal, a large-
sized copper precipitate was placed in pure iron and
allowed to stand for a sufficiently long time until the
matrix reached saturation. Then, we calculated the
average concentration of impurity atoms in the matrix
layer located at a distance from the initial precipitate.

It can be seen from Fig. 2 that the time of dissolu-
tion of a single precipitate (curve 2) tends to infinity in
the vicinity of the equilibrium concentration of impu-
rity atoms in the matrix (dash-dotted line 3). The
observed difference is associated with the Gibbs–
Thomson effect [20, 21], because curve 2 is con-
structed for a small-sized precipitate, whereas dash-
dotted line 3 corresponds to the equilibrium between
the bulk phases. It should be noted that, in this case,
the incubation period for the onset of the decomposi-
tion of the alloy (curve 1) apparently tends to infinity
at a different concentration of impurity atoms, which
is several times higher than the equilibrium concentra-
tion. Taking into account the fact that the onset of the
decomposition of the alloy requires the formation of a
critical nucleus due to the occurrence of thermal f luc-
tuations and also that the maximum achievable scale
of f luctuations should depend on the size of the com-
putational region, we constructed similar lines for a
supercell with a decreased size of 60 × 60 × 60 unit
cells (curves 1' and 2' in Fig. 2). It can be seen that the
two curves in Fig. 2 are shifted to the right by approx-

imately the same value. Therefore, the difference
between the solubility limit and the limit of stability
cannot be explained by the size effect.

Figure 3 shows the temperature dependences of the
binodal and the pseudospinodal obtained on the basis
of the Monte Carlo simulation data (curves 1 and 2,
respectively). Dotted curve 3 in this figure corre-
sponds to the binodal of the regular solid solution [1],
which is calculated according to the formula kT =
ν(1 – 2c)/ln[c/(1 – c)], where the energy of mixing
ν = –38.3 mRy is obtained from the pair potential tak-
ing into account the occupation numbers of the coor-

dination spheres, i.e., ν = /2, Vi = {–7.4, –

2.3, ‒0.3} mRy, and zi = {8, 6, 12}. It can be seen that
the binodal calculated using the Monte Carlo simula-
tion technique is very close to the binodal predicted
from the model of regular solutions. The pseudo-
spinodal in the region of small concentrations is close
to a linear function, thereby exhibiting a qualitative
similarity to the spinodal of the regular solid solution,
which is defined by the formula kT = –2νc(1 – c) [1].
However, this spinodal is described by numerical val-
ues of one order of magnitude lower than those of the
spinodal of the regular solid solution, but, in the phys-
ical sense (the line on which the incubation period
tends to infinity) is significantly different from the
spinodal indicating the threshold of the absolute insta-
bility of the alloy with respect to small long-wave-
length f luctuations. Note also that, in [22], it was
shown that the spinodal of the cluster approximation
(which is more accurate) lies much more to the left of
the mean-field spinodal, while the binodal position
remains unchanged.
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Fig. 2. (1, 1') Incubation period for the onset of the decom-
position of the alloy and (2, 2 ') time of dissolution of a pre-
cipitate as a function of the average composition of the
alloy at a temperature T = 800 K. The calculations are per-
formed for computational regions with sizes of (1, 2) 90 ×
90 × 90 or (1 ', 2 ') 60 × 60 × 60 unit cells. Vertical dash-
dotted line 3 corresponds to the equilibrium concentration
of impurities in the matrix in contact with a large-sized
precipitate. The time is expressed in units of the number of
elementary permutations per impurity atom.
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Fig. 3. (1) Equilibrium concentration of impurities in the
matrix (binodal) and (2) pseudospinodal obtained from
the condition that the incubation period tends to infinity.
Dotted curve 3 is constructed according to the formula for
the regular solution binodal [1].
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3. DISCUSSION OF THE RESULTS

We have proposed a rough qualitative interpreta-
tion of the results obtained in this study.

In the absence of f luctuations of the alloy compo-
sition, a subcritical nucleus (R < Rcr) is dissolved.
However, it can grow under the influence of f luctua-
tions. If, in this case, the nucleus reaches a critical size
(R > Rcr), it continues to grow even after the comple-
tion of the action of the f luctuations. From the energy
point of view, the probability of the formation of a
fluctuation with the energy ΔG obeys the law
~w0exp(–ΔG/kT). Hence, it follows, at first glance,
that the critical nucleus is formed upon sufficient
exposure, provided only that w0 ≠ 0. However, the for-
mation of a critical nucleus is a process that develops
over time, during which the nucleus size R under the
influence of a f luctuation runs over all possible values
from the size of a single atom to the critical size Rcr.
Therefore, in addition to the energy factors, it is nec-
essary to take into account the kinetic arguments. The
maximum rate of supply of a new substance to the
nucleus as a result of the influence of a f luctuation is
limited by the average composition of the alloy with
the impurity concentration c0 and decreases with a
decrease in the value of c0. On the contrary, the inten-
sity of dissolution of a subcritical nucleus increases as
the value of c0 approaches the binodal. The two com-
peting processes are balanced at a certain critical size
of the nuclei.

According to [23], in the absence of f luctuations,
the f lux at the surface of a nucleus can be represented
in the form

(2)

where D is the diffusion coefficient, σ is the renormal-
ized surface tension, and  is the binodal concentra-
tion. The critical size Rcr of the nuclei is determined by
the condition J = 0; i.e.,

(3)

Let us introduce an additional contribution into
expression (2), i.e., the f luctuation flux Dc0 acting for
an infinitely long time, which corresponds to the
image of a maximum possible f luctuation. Then, the
condition for the formation of a critical nucleus takes
the form

(4)

In the case of a weak supersaturation (c0 –  ≫ 1), we
have

(5)
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The value of the critical nucleus size  remains rel-
atively large for a sufficiently small concentration c0.
Therefore, in the case of weakly supersaturated alloys,
in the vicinity of the binodal there should exist a region
where subcritical nuclei are dissolved even under the
conditions of the action of a maximum possible f luc-
tuation flux. This means that the formation of a criti-
cal nucleus in this region requires an additional stimu-
lation; i.e., only the heterogeneous nucleation takes
place.

4. CONCLUSIONS
Thus, based on the results of the Monte Carlo sim-

ulation, we put forward the hypothesis that, in the
phase diagram of a binary alloy, there is a pseudo-
spinodal (or a limit of stability of a homogeneous state
with respect to thermal f luctuations of the composi-
tion of the alloy). This pseudospinodal separates the
homogeneous and heterogeneous nucleation regions
in the phase diagram of the alloy.
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