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INTRODUCTION

Grain boundary segregations (GBSs) determine
many performance characteristics of materials, pri�
marily, their strength, plasticity, and creep [1, 2] and
electric properties [3, 4]. They also affect the reliability
and service time of equipment [5, 6] and the grain size
achieved after severe plastic deformation (SPD) [7–
9]. They also facilitate the development of phase insta�
bility [10]. In ultradisperse systems in which the frac�
tion of near�boundary atoms is comparable to that of
atoms in the bulk, GBSs considerably change the ther�
modynamics of alloys; as a result, the traditional phase
diagrams of alloys are suitable only in a local sense
[11–13].

According to the mechanism of their formation
and characteristic properties, segregations are divided
into equilibrium and nonequilibrium ones [14]. Equi�
librium segregations result from a change in the chem�
ical potential of atoms on the free surface [15] or
boundaries of grains [16]. In the latter case, they are
stable to the same extent as the grain structure. The
steady state of these segregations is described by Lang�
muir–McLean [17] and Fowler [18] isotherms. The
formation kinetics is described by the McLean [17]
and Slezov [19] equations. In contrast, nonequilib�
rium segregations appear only at the intermediate
stages of kinetics generally as a result of the treatment
of the substance and disappear after prolonged anneal�
ing. Nonequilibrium segregations appear during irra�
diation [20] and probably during SPD as a result of the
action of vacancy [21] or dislocation flows [22, 23].

Nanocrystalline alloys obtained by SPD have long
ago attracted the attention of researchers in view of
prospects for technological application [24–26], but

the nature of phase transformations in them [27–34]
remains debatable. On the one hand, a strong
mechanical action is believed to cause “frozen” non�
equilibrium phase states [35–37], including nonequi�
librium GBSs. On the other hand, it gives rise to so�
called nonequilibrium grain boundaries with excess
dislocations [24] and a small grain size is achieved at
which the proportion of near�boundary atoms is com�
parable to the bulk proportion. If the grain boundary
(GB) is assumed to be 1 nm, there are is 25% near�
boundary atoms for 10 nm grains and 50% for 5 nm
grains [38]. The latter suggests that equilibrium GBSs
make a considerable contribution to the picture of
phase transformations during SPD [11–13]. To
understand the general picture, it is necessary to study
the possible results of the action of various mecha�
nisms.

Though the subject seems very simple, the equilib�
rium GBSs in grains with finite dimensions were stud�
ied insufficiently and the most important studies (e.g.,
[19, 39]) are not well�known. A theoretical rationale
for the similarity of kinetics and degree of segregation
on a free surface and intergrain boundaries was given
in [40] and experimental support for this was pub�
lished in [41, 42]; it was concluded that these quanti�
ties can be described in terms of the same theory. The
results of the experiments of [43, 44] were important,
from which it followed that GBSs can cover several
atomic layers. An approximate equation for the segre�
gation kinetics was derived in [19] for alloys with
unlimited solubility and studied further in an assump�
tion that the impurity concentration in the bulk of the
grain remains small, but increases considerably at the
grain boundary [45]. It follows from this solution that
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the concentration of the segregating component on
the GBs decreases with the grain size and the segrega�
tion kinetics can be nonmonotonous due to the differ�
ence between the diffusion coefficients and segrega�
tion energies of impurity atoms. It was shown [39] that
for binary alloys at critical temperatures, there is a crit�
ical grain size starting from which the whole impurity
segregates at the GBs and is completely removed from
the bulk of the grain. It was also shown that the depen�
dence of the impurity concentration on the GB on the
grain size in ternary systems can be nonmonotonous.
Studies of the effect of the grain size on the develop�
ment of a GB phase transition, which is possible on
condition of interaction between the atoms of the seg�
regated component, were reported in [46]. It was
shown that as the grain size decreases, the GB phase
transition shifts toward lower temperatures. This effect
is a simple consequence of the decrease in the concen�
tration of the segregated component on the GB when
the grain size decreases. A numerical simulation of the
joint kinetics of segregations and decomposition in
finite�size grains was performed [11–13] using a regu�
lar solid solution model [47]. It was shown that the
degree of stability of an alloy in the bulk of grains
changes in view of redistribution of atoms between the
GB and the volume. It was predicted [48] that the
grain structure can be stabilized due to a decrease in
the energy of intergrain boundaries during the impu�
rity segregation. For Ni–P and Ni–W systems, this
effect was well supported experimentally [8].

Here, we reviewed possible effects in the develop�
ment of GB segregations depending on the grain size
and predicted new qualitative features of transforma�
tions in nanocrystalline materials to elaborate the
above concepts. Thus the integrated degree of decom�
position is an important characteristic of an alloy,
which shows the degree of nonhomogeneity of the
alloy in composition and affects its electric and mag�
netic properties. It follows from a combined analysis of
the conditions of the Gibbs equilibrium and the law of
conservation of matter that the dependence of this
characteristic on the grain size is a nonmonotonous
function so that there is a critical grain size at which
the degree of decomposition is maximum.

Another important characteristic is the impurity
concentration on the grain boundary, which largely
determines the mechanical properties of the material.
As shown in [39], the behavior of this characteristic
qualitatively changes when a certain critical size is
reached. It seems useful to compare these two defini�
tions of the critical size and consider their temperature
dependence. For early stages of the segregation kinet�
ics, a simple approximate solution was proposed,
which seems especially useful for multicomponent
systems; this solution was compared with Slezov
kinetics. Finally, it was shown that with GB segrega�
tions, the equilibrium grain size exists only below the
critical temperature and that the temperature depen�
dence of this size is generally nonmonotonous and

qualitatively different for dilute and saturated solid
solutions. It was hypothesized that for nanocrystalline
alloys obtained by SPD the appearance of nonequilib�
rium GBs hinders further size reduction of grains
because the equilibrium grain size increases due to the
larger segregation capacity of these boundaries. The
stated peculiarities of the thermodynamics of nanoc�
rystalline alloys should be taken into account in the
design of new promising materials.

Critical Grain Size in Binary Alloys

Let us consider a grain shaped as a sphere of a
radius L with a boundary layer with a width d. Suppose
the grain has an equilibrium distribution of concentra�
tions so that the impurity concentration on the grain
boundary is  and the impurity concentration in the
bulk is . Then the law of conservation of matter has
the form

, (1)

where  is the average impurity concentration over
the grain. 

For the regular solid solution model [47], the con�
centrations  and  are related by the Fowler equa�
tion [18]

, (2)

where ,  are the changes in
the dissolution and mixing energies of the impurity on
the GB relative to the corresponding energies in the
bulk; ,  are the dissolution energies; ,  are
the mixing energies in the bulk and on GB; and  is
the segregation energy. The Fowler equation appears
from the condition of equality between the chemical
potentials at equilibrium, , where ,
and the free energy density of the alloys is

.

If the composition of alloy  and the energy parame�
ters in the bulk and on the GB are known, (1) and (2)
form a system for the concentrations  and . The
system has a physically adequate solution at tempera�
tures above the decomposition line recorded as

 = (1 – .
For the ideal solution (νGB = νb = 0), Eq. (2) is

called the Langmuir–McLean isotherm [17]. The
solution of system (1), (2) for this case is of the form
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where , , and

. This solution has never been
recorded in analytical form because the formulas are
cumbersome. However, the analytical form of the
solution is useful in several problems, for example,
when seeking an equilibrium grain size.

The integrated degree of decomposition is
recorded as

, (4)

where V is the volume of the sample. Sd can take values
from 0 to 1. It characterizes the macroscopic proper�
ties of the material and is useful for interpreting the
experiments in which the decomposition is recorded
on the basis of indirect signs (magnetic susceptibility
of the sample, magnetization, change in the mean lat�
tice parameter, etc.). For a grain shaped as a sphere
with a radius L with a near�boundary layer with a
width d, we have

. (5)

Figures 1 and 2 show the dependences of the con�
centrations  and  on the grain size at a fixed GB
(in the adopted notation, L is half of the grain size and
d is the half�width of the GB). The alloy considered
ideal; the only energy parameter  at fixed 
determines the temperature. We can see that in the
limit of low temperatures (i.e.,  � 1; curves 1
and 2, Fig. 1), the decrease in the grain size is accom�
panied by a monotonic decrease in сb to a certain crit�
ical size at which the grain is ideally purified from the
impurity (сb = 0). The impurity concentration on the
boundary  at L > Lcr is nearly constant (curves 1 and
2, Fig. 2) at L > Lcr and decreases monotonically with
the grain size at L < Lcr. This decrease is caused by the
exhaustion of the impurity in the bulk and its uniform
distribution over the whole area of boundaries accord�
ing to model assumptions. An increase in T leads to a
smoothing of the curves, which remains insignificant
within a reasonable range of parameters (curves 1' and
2 '). For random temperatures, it is reasonable to

determine the critical size  from the inflection point

on the  curve. For , the limiting grain
boundary impurity concentrations  no longer
depend on the sort of the impurity or temperature and
depend only on the grain size (in Fig. 2, curves 1 and
1', 2 and 2 ' come closer to each other at ). The
effect of decreasing  at smaller grain sizes is well
known [19, 14] and was supported experimentally

[49]. The existence of a clear�cut critical size  was

discussed in [39], but the dependence of  on the
parameters (e.g., temperature) of the problem was not
considered.
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Figure 3 presents the plots of the integrated degree
of decomposition Sd(L) on the grain size at the same
parameters. It can be seen that the Sd(L) curve has a
maximum whose position can be correlated with
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do not coincide at a random temperature, but
approach each other in the limit of low temperatures.

The plots of the temperature dependences  and

 at different impurity concentrations  are

shown in Fig. 4. It can be seen that the critical size 
exists only below a certain threshold temperature,

which decreases with , while  exists at any arbi�
trarily high temperature. Both critical sizes quickly
increase as  decreases, reaching hundreds of nanom�
eters already at .

For spherical grains, the properties of GBs are the
same over the whole grain surface. The real grain
structure, however, contains boundaries of different
(small� and large�angle) types, and the flat regions of
GBs alternate with regions of ternary joints of grains,
where the perturbations ,  are more pronounced.
This suggests a hierarchy of critical sizes at which the
properties of materials change significantly. For exam�
ple, the volume fraction of atoms lying at ternary joints
naturally increases as L decreases. This suggests the

existence of a critical size  for highly dilute solid
solutions, at which both the volume and the GB are
ideally purified from the impurity so that all impurity
atoms assemble at ternary joints.

Grain Boundary Segregations in Ternary Systems

In an approximation of the ideal solid solution, the
free energy density of a multicomponent alloy is

(6)

where N is the number of impurity sorts;  and  are
the energy of dissolution and the concentration of the
ith impurity. Then, by analogy with (1) and (2), the
system

, (7)

(8)

is valid.
Figures 5 and 6 present a typical solution of this

system for a ternary alloy for different grain sizes. In
large grains on the GB, the component with large 
segregates irrespective of the average concentration of
another impurity (curves 1'–3', Fig. 6), which can
decrease on the GB (1–3, Fig. 6), but remains almost
constant in the bulk of the grain (1–3, Fig. 5). Thus
the component with smaller  is blocked in the bulk
of large grains under the thermodynamic equilibrium
conditions.
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When the grain size decreases to the critical value

, the component with large  in the bulk is
exhausted due to segregation on the GB (1'–3',
Fig. 5); therefore, the concentration of this compo�
nent on the GB decreases as the grain size decreases
further (1'–3', Fig. 6). As a result, the component with
smaller  can segregate on the GB. Therefore, for the
component with a smaller  value, the  depen�
dence is nonmonotonic (1–3, Fig. 6), while  is a
threshold dependence (1–3, Fig. 5). The calculations
show that these qualitative features of segregations,
including the nonmonotonic character of the 
dependence for the component with a smaller 

value, persist at lower concentrations  when the

maximum grain boundary concentrations  are no
longer close to 1. This effect was mentioned in [39]
and is given here mainly for the sake of a comprehen�
sive review.

Kinetics of Grain Boundary Segregations

A system of algebraic equations for GBS kinetics
was suggested by Slezov et al. [19, 45]. This system is
based on a reasonable assumption that the grain
boundary is rather narrow and the diffusion coefficient
on it is large compared with that in the bulk. There�
fore, the local thermodynamic equilibrium sets in on
the GB within the times that are much smaller than
the characteristic segregation kinetics times deter�
mined by the impurity diffusion from the bulk. This
allows us to use the Fowler equation (2) or the Lang�
muir–McLean isotherm at an arbitrary stage of kinet�
ics for correlating the impurity concentrations on the

grain boundary  and in the neighboring layer .
In the ideal solid solution approximation for the
spherical grain, the system has the form

(9)

(10)

The solution of this system for the binary alloy is as
follows (it was not given in [19, 45] probably because
of the cumbersome form of the formulas):
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It is difficult to find an analytical solution of sys�

tem (9), (10) for a multicomponent alloy. There�
fore, we should seek approximate solutions.

Note that the impurity segregation energies are
generally large compared with the thermal energy,

. For example, the Ag segregation energy
on the grain boundaries in the γFe–40 wt % Ni was
evaluated at –47 kJ/mol [50], which is approximately
five times higher than the thermal energy at T =
1000 K. The experimental data and numerous theo�
retical predictions, which showed that the segregation
energy of B, P, S, Sb, and Sb in α�Fe is approximately
the same, were summarized in [14]. Hence it follows
that at the initial stages of kinetics, the grain boundary

acts as an ideal drain for impurities; i.e., .

Due to this, at , (9) is considered the final
solution independent of (10).

An equation that is close to (9) in form for 
can be derived in a simple alternative way. Indeed, it
follows from the law of conservation of matter that
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solution (14) decreases near the equilibrium concen�
trations, which can be found by Eq. (3) for a binary
alloy or by solving system (7), (8) for a multicompo�
nent alloy. A more adequate approximate solution can
be obtained by sewing together the solution of (14) at
small times with the indicated equilibrium concentra�
tions in the limit of large times. For the binary alloy, it
is reasonable to perform the sewing by choosing the
smaller of the two solutions.

The situation for the multicomponent alloy is less
trivial; in view of the difference between the diffusion
coefficients of impurities, the concentration of a cer�
tain impurity on the GB can at first increase to high
values and then decrease because of its withdrawal by
another impurity as the latter comes to the GB [45].
The competition between impurities on the GB leads
to additional limitation of the applicability of (14): the
sum of impurity concentrations on the GB should not
exceed 1. Therefore, it is reasonable to note that this
condition is necessarily satisfied starting from a certain

size  because of the decrease in the equilibrium

 at smaller grain sizes (Fig. 2); i.e., Eq. (14) is
adequate for multicomponent nanocrystalline alloys.

Figure 7 presents for comparison the plots of segre�
gation evolution calculated by Eqs. (9) for ,
(11), and (14) for grains with different sizes in a binary
alloy. We can conclude that in nanocrystalline alloys

(or, more precisely, when ), Eq. (14) remains
adequate even in the saturation mode (curves 1 and 2,

Fig. 7a). This is caused by the fact that at , the
grain boundary continues to act as an ideal drain of an
impurity until the impurity is exhausted in the bulk of
the grain. Indeed, according to Figs. 1 and 2, after the

equilibrium set in at , the impurity concentra�
tion in the bulk is close to zero (in particular, the con�

dition  is satisfied), while the impurity con�
centration on the GB is far from unity. Consequently,

if both conditions  and  are satisfied

cr
(1)L L<

GB
( ) ( )ic L

( ) 0tλ =

cr
(1)L L<

cr
(1)L L<

cr
(1)L L<

( )( ) 0i tλ =

cr
(1)L L< / 1kTδε �

in a binary alloy, there are no limitations on the appli�
cability of (14) even at late stages of the kinetics. This
actually means that the grain boundary impurity con�

centrations  depend on the sort of the substance
and the temperature only at the initial stages of the
kinetics via the diffusion coefficient and mainly on the
grain size at the last stages.

A comparison of Figs. 7a and 7b shows that the
accuracy of solution increases with  so that at

, the solution is considered valid up to
 irrespective of the grain size. On the other

hand, the minor difference between the solution of
(14) from that of (11) at a small grain size is due to the
above�mentioned larger nonlinearity of (14) accord�
ing to the d/L parameter. This follows from the fact
that in the limit of large , the solutions of (14)
and (11) coincide for large grains but still differ for
small ones (Fig. 7b).

Grain Boundary Phase Transition

For a regular solid solution, the possibility of a GB
phase transition follows from the fact that when a spin�
odal is reached at a local level due to the condition

, anomalous (ascending) diffusion
takes place in the system [52]; i.e., the diffusion coef�
ficient of impurities becomes negative. The Fowler
isotherm (2) takes the characteristic form, becoming
S�like, so that one temperature corresponds to differ�
ent  values [14]; that is, the solution is disrupted.
An analysis of grain size effects using the Fowler iso�
therm was reported in [46]. It was shown that the GB
phase transition is shifted toward lower temperatures
at smaller grain sizes and the achieved GB concentra�
tion decreases because the impurity is distributed over
the whole boundary.

The latter conclusion is wrong because when a
small grain size is achieved, the Fowler equation is
inapplicable to a description of the GB transition.
Indeed, the GB phase transition starts according to

GB( )c t

/kTδε

/ 10kTδε ≈

GB 1c =

/kTδε

( )1 2 1 0c c− ν − =

GBc
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2

(a)

2, 2', 2''

3, 3'

3''

0.6

0.4

0.2

0 4 6 8 t, s

1, 1', 1''

cGB

0.8

2

(b)

2, 2', 2''

3, 3', 3''

Fig. 7. Kinetics of GBSs in a binary alloy at , D = 10–17 m2/s, d = 1 nm, L/d = 10 (1, 1', 1''), 20 (2, 2', 2''), and 40 (3, 3 ',
3 '');  (Fig. 7a) and  (Fig. 7b). The solutions were obtained by Eqs. (14) (solid lines), (9) at  (dashed
line), and (11) (dotted lines).
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the scenario of an interrupted decomposition [47]. As
mentioned above, in small grains, the impurity in the
bulk is exhausted. As a result, isolated segregations
remain on the GB at equilibrium and the notion of GB
concentration loses its sense. Thus the Fowler equa�
tion can be used to predict the possibility of a GB tran�
sition, but the solution is physically inadequate for
small grains.

A more correct study of GB transition can be per�
formed on the basis of the formulated approach by
numerical simulation using the Cahn–Hilliard spin�
odal decomposition model, which takes into account
the local change in the interatomic interaction ener�
gies ( , ) near the GB [11–13]. The result (the mor�
phology of segregations on the GB) should evidently
depend on the ratio of the energies , , , and .
This problem requires the use of diffusion kinetics
equations and is beyond the scope of this study.

Equilibrium Boundary Width and Grain Size

The peculiarities of GBS considered in previous
sections refer to systems with fixed grain size and grain
boundary. As is well known, recrystallization occurs in
pure metals and is described by the Hillert equation
[53], which coincides in its structure with the
Livshits–Slezov equation for seed growth [54]. The
motive force of recrystallization is the decrease in the
total energy of intergrain boundaries due to an
increase in the average grain size. Therefore, recrystal�
lization occurs irreversibly up to a transition to a single
crystal, but the kinetics of this process, which depends
on the number of atomic jumps across the boundary
and the boundary curvature, slows down at lower tem�
peratures and larger grain sizes. Hence it follows that
the above results obtained for the fixed L/d ratio can be
interpreted as quasistationary states achieved in the
course of the permanent fragmentation of grains at a
temperature T followed by fast quenching to the tem�

ε ν

δε δν ε ν

peratures at which the diffusion (and hence recrystal�
lization) is frozen.

It was noticed [55] that while decreasing the free
energy of the system, GBSs can stabilize the grain
structure in contrast to the expected Livshits–Slezov
kinetics. This conclusion was confirmed by both
experimental [9, 56–58] and numerical simulation
[59] data. A molecular dynamics simulation showed
that in a system with Lennard�Jones potentials, the
energy of a GB can become zero if it accommodates a
sufficient number of atoms; i.e., the presence of a GB
in the system becomes thermodynamically favorable
due to segregations. The equilibrium grain size  was
determined within the framework of a statistical
approach using Fowler equation (2) [46, 60]. It was
recently shown [8] that  quickly increases as the
mean composition of the alloy decreases; the theoret�
ical predictions were in good agreement with the
experimental data for Ni–P and Ni–W systems.

Researchers generally tend to consider the grain
size L as the free parameter. The equation for the free
energy minimum, however, contains the dimension�
less d/L ratio. Consequently, the energy minimization
can be provided not only by optimization of L at a
fixed GB width, but also by optimization of d at fixed
L, or by varying these quantities together. Indeed, let
us imagine, for simplicity, that the volume of the sam�
ple V0 is filled with equal grains, the volume of each
grain being equivalent to the volume of a sphere with a
radius L and a boundary layer with a width d. Then the
number of grains in the volume V0 is inversely propor�
tional to the volume of the sphere and the equation for
the free energy of the sample is recorded as

(15)

where  is the energy density of the GB layer in the
absence of an impurity;  and  are the free
energy densities of the alloy calculated by (3) at con�
centrations in the bulk and on GB. According to (3)
and (15), the free energy of the sample depends on the
dimensionless ratio of parameters . This
allows us to suggest a mechanism of stabilization of the
nonequilibrium grain boundaries due to the formation
of a wide segregation layer.

The nonequilibrium GBs appear under the condi�
tions of severe plastic deformation of a material at
small grain sizes (10–100 nm) and are characterized
by strong lattice distortions in a layer with a width of
several nanometers [24]. The kinetic factors (disloca�
tion or vacancy flows) may be the reason for segrega�
tions on such boundaries during SPD. The above con�
siderations, however, suggest that the nonequilibrium
segregations that appeared on the nonequilibrium
grain boundaries lead to a decrease in the GB energy
and are stabilized; i.e., the defective structure of the
boundary and the segregation layer that appeared on it

eqL
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Fig. 8. Temperature dependences of the equilibrium L/d
ratio at  eV (1–3) and 0.1 eV (1'–3') and different
alloy compositions: c0 = 0.02 (1, 1'), 0.03 (2, 2'), and 0.04
(3, 3'). The dashed lines denote the temperatures at which
the equilibrium L/d ratio disappears at the corresponding
parameters. 
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acquire equilibrium properties. In this case, further
fragmentation of grains is disadvantageous because the
minimum F(d/L) was achieved due to an increase in
the equilibrium d rather than a decrease in the equilib�
rium L. It is reasonably believed that suppression of
wide segregations should promote further fragmenta�
tion of the grain structure.

Figures 8 and 9 present the plots of the temperature
dependence of the equilibrium L/d ratio for the ideal
solid solution at different alloy composition and
intrinsic boundary energy. The plots were constructed
using Eqs. (3) and (15). The curves are generally non�
monotonous; at moderate Т, a minimum of L/d is
reached for dilute solutions (Fig. 8) and a maximum
for concentrated solutions (Fig. 9). In dilute solid
solutions, the equilibrium L/d ratio exists only below
the critical temperature and quickly decreases as the
impurity concentration increases.

CONCLUSIONS

At moderate temperatures, a critical grain size
exists in nanocrystalline alloys at which the integrated
degree of decomposition reaches maximum. The indi�
cated critical grain size increases as the average (over
the sample) impurity concentration decreases. In
multicomponent alloys, the GB impurity concentra�
tion with a lower segregation energy reaches maxi�
mum at a certain grain size. For the segregation kinet�
ics in nanocrystalline alloys, an approximate analyti�
cal solution was suggested. The equilibrium grain size
exists below a critical temperature and its temperature
dependence is generally nonmonotonous. A hypothe�
sis was put forward according to which the appearance
of nonequilibrium grain boundaries hinders further
fragmentation of alloy grains under the conditions of
severe plastic deformation.
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