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Abstract—A sequential model of the decomposition of the bcc FeCr binary alloy is formulated that takes into
account the configurational and magnetic contributions to the free energy. Using the results of ab initio cal-
culations, the theory of regular solutions is generalized by considering the contributions of the magnetic
entropy, the concentration dependence of the exchange interactions, and the mixing energies. The resulting
expression for the free energy makes it possible to construct the boundaries of the two-phase region of the bcc
FeCr alloy in good agreement with the experimental data, as well as to predict the position of the spinodal, below
which the formation of highly dispersed states should be expected when starting from a homogeneous state.
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1. INTRODUCTION
The Fe–Cr binary alloy is the basis of many

important industrial steels, especially those used in the
nuclear power industry, in which high resistance to
radiation and corrosion is required [1, 2]. It was estab-
lished that the Fe–Cr alloy with a low Cr content (less
than 12 at %) exhibits anomalous phase stability in the
ferromagnetic state [3–6]. On the other hand, there is
a wide region of immiscibility in the Fe–Cr system,
within which the alloy decomposes into phases with
high and low chromium contents [3, 7] that can cause
embrittlement of steel [8].

To preserve and improve the performance charac-
teristics of the alloy, alloying element additives are
used, such as Ni, Mn, Mo, Co, etc. Thus, the three-
component Fe–Cr–Co alloy demonstrates high cor-
rosion resistance, plasticity, and the thermal stability
of magnetic properties. In this case, high magnetic
properties of this alloy are achieved in a highly dis-
persed state that is formed as a result of spinodal
decomposition of a homogeneous state into the α1 fer-
romagnetic phase depleted in Cr and the α2 paramag-
netic phase enriched in Cr [9].

To select the optimal composition and heat treat-
ment conditions that provide the required properties
of alloys, a deep understanding of physical mecha-
nisms that determine the formation and stability of
their structural state is required. The enthalpy of mix-
ing of the Fe–Cr alloy in the para- and ferromagnetic
states was calculated within the density functional the-

ory (DFT) in [4, 10, 11]. It was shown that the mixing
energy of the Fe–Cr binary alloy depends significantly
on the chromium concentration. According to the
results of ab initio calculations, the enthalpy of mixing
increases by a factor of approximately 1.5 (at a chro-
mium concentration of 50 wt %) upon the transition
from the paramagnetic to ferromagnetic state and, on
the contrary, it decreases and becomes negative at a
chromium concentration of less than 10 wt % [4, 10].
As shown in [12], the anomalous behavior of the
enthalpy of mixing can be explained within the frame-
work of a model that takes into account the tempera-
ture dependence of the magnetic contribution.

Thus, the theory of decomposition in the Fe–Cr
system should take into account the magnetic and lat-
tice degrees of freedom, as well as their influence on
each other. As a result, the effective potentials of inter-
atomic interactions—and, consequently, the mixing
energy and the Curie temperature—should depend on
the concentration of the components. In addition, the
short-range magnetic order at temperatures above the
Curie temperature (see discussion in [13]) and
the contribution of the magnetic entropy—that is not
negligible [14]—should be taken into account.

To date, there is no consistent theory that takes into
account the listed features of the alloy. The mutual
influence of the magnetic and chemical orderings in
binary alloys within the phenomenological approach
has been actively discussed in a number of studies (see,
for example, the review article [15]). The proposed
1031



1032 RAZUMOV, GORNOSTYREV
approaches made it possible to consider the qualitative
features of the interaction between the magnetic and
chemical subsystems, but turned out to be insufficient
for a quantitative description of the thermodynamics
of the alloys under consideration.

Recently, theoretical concepts of the decomposi-
tion of alloys that contain magnetic components have
been further developed [13, 16–19] owing to the emer-
gence of new experimental data and ab initio calcula-
tion results. The role of magnetism in the decomposi-
tion of Fe–Cr alloys was discussed in [16]. In [17, 18],
the use of the method of magnetic cluster decomposi-
tion made it possible to propose a consistent approach
to the description of the thermodynamics and kinetics
of the decomposition of Fe–Cr alloys. In [19], atten-
tion was drawn to the fact that the use of the ab initio
mixing energies leads to significant overestimation of
the decomposition temperature. To solve this prob-
lem, the authors of [19] proposed to use the tempera-
ture-dependent mixing energy, which made it possible
to obtain a solubility curve in agreement with the
experiment. In [13], the transition to concentration-
dependent interactions was used to describe the
decomposition in a binary alloy with one magnetic
component (bcc FeCu).

It should be noted that the boundary of the two-
phase region of the bcc FeCr alloy at elevated tem-
peratures is successfully calculated [20] by the meth-
ods of theoretical thermodynamics implemented in
the CALPHAD software package; however, the ques-
tion of the nonzero solubility of chromium in the limit
at T = 0 K [21], in which the data are extremely con-
tradictory, still remains arguable.

In this study, we formulate a model for the decom-
position of an alloy with two magnetic components
that eliminates the disadvantages of the previous
approaches and takes into account the magnetic con-
tributions to the enthalpy and entropy of the system.
The model is parameterized using the ab initio calcu-
lation results. We show that it is of crucial importance
to take into account the concentration dependences of
the effective interactions and exchange parameters for
a correct description of phase equilibria in the Fe–Cr
system.

2. FREE MIXING ENERGY OF AN ALLOY 
WITH TWO MAGNETIC COMPONENTS

The alloy mixing enthalpy has the following form

(1)

where  is the enthalpy of the alloy; 
and  are the energy of pure component α and its
atomic concentration (α = {Fe, Cr}), respectively.
Hereinafter, we assume for brevity that summation is
performed over repeated indices in the products.

{ } { }= − pure
mix α α α α( , ) ( , ) ( ) ,H T с H T с E T c

{ }α( , )H T с α
pure( )E T

αc
PHYSICS OF METAL
We can represent Hmix(T, {cα}) as a sum of the para-
magnetic (PM) and magnetic contributions, as fol-
lows:

(2)

We take the mixing enthalpy in the PM state in
accordance with the standard model of a regular solid
solution [22], as follows:

(3)

where  is the mixing energy of the components in
the PM state.

We write the magnetic contribution to the enthalpy
of mixing in the Heisenberg form, as follows:

(4)

where  is the energy of magnetic exchange between
the Fe and Cr atoms that depends on local concentra-
tions of the components;  is the
correlator of the magnetic moments of the nearest
neighbors of α and β atoms;  and

 It should be noted that the cor-
relator value varies, by virtue of the definition, within
the range of  and the absolute values of
the magnetic moments are included in the definition
of exchange energies  It is possible to generalize the
mean field method [23] used here by the cluster
expansion [24]; its generalization to the case of an
alloy with magnetic components, i.e., magnetic clus-
ter expansion (MCE), was considered in [25, 26].
Here, we restrict ourselves to the mean-field approxi-
mation, but we will assume that the effective interac-
tions in the alloy depend on the local concentration.

The calibration contributions linear with respect to
concentrations in formula (4) affect neither the ther-
modynamics nor the kinetics of transformations, but
ensure that the formulas agree with the definition of
the term “mixing enthalpy” according to Eq. (1). They
correspond to the magnetic energies of the pure com-
ponents taken in appropriate proportions. It should be
noted that the nonmagnetic parts of the energies of the
pure components are included in the definition of

 according to Eq. (3).
Further, we simplify Eqs. (2)–(4) by substitution in

the form of  As a result, we have

(5)
where

(6)

(7)
We calculate the spin correlators using the Oguchi

model that is used to describe the short-range mag-

{ } { } { }α= +PM magn
mix α mix mix α( , ) ( ) ( , ),H T с H с H T с

= −PM PM
mix FeCr Cr Fe,H c cv

PM
FeCrv

= − −magn 0 0 2
mix αα αα α αα αα α FeCr FeCr Fe Cr2 ,H J Q c J Q c J Q c c

FeCrJ

( )αβ α β α βQ m m= m m

( )0
αα αα α 1 ,J J с= =

( )0
αα αα α, 1 .Q Q T с= =

αβ1 1,Q− < <

αβ.J

PM
mixH

2
Fe Fe Cr(1 ).c c c= −

0 0
mix FeCr Cr Fe αα αα α αα αα α,H c c J Q c J Q c= − + −v

= +PM mix
FeCr FeCr FeCr( ) ( ),T J Tv v

mix
FeCr FeCr FeCr FeFe FeFe CrCr CrCr2 .J J Q J Q J Q= − −
S AND METALLOGRAPHY  Vol. 122  No. 11  2021



MODEL OF DECOMPOSITION OF ALLOY WITH TWO MAGNETIC COMPONENTS 1033
netic order in ferro- and antiferromagnets that are
comprised of atoms of the same type [14, 27]. This
approach uses the approximation of paired clusters, in
which the interaction of each spin with one of the
neighbors is taken into account precisely and the inter-
action with the remaining z – 1 spins is replaced by the
effective Weiss field (z is the coordination number).
Here, we generalize the Oguchi model to the case of an
alloy and assume that the spin correlator is related to
the Weiss field acting on the selected pair of spins, as
follows:

(8)

(9)

where  is the Weiss field around an α atom. In this
study, we restrict ourselves to analyzing the states of
the FeCr alloy at temperatures substantially higher
than the Néel temperature of chromium (TN = 311 K)
and assume that the short-range antiferromagnetic
order in this case is absent or negligible at any concen-
tration. Therefore, the effective Weiss fields around
atoms of each type can be determined without
accounting for the difference in magnetic sublattices,
as follows:

(10)

where  the mean value of the reduced magnetic
moment ( ) of an α atom that corresponds to
the given local concentrations of the components and
depends on the temperature. Formula (10) neglects the
corresponding pair correlations, so that the  values
can be considered independent of the type of the atom
around which they are calculated. The  values are
determined from the following system of transcenden-
tal equations:

(11)

Using formulas (8)–(11), it is possible to find 
but the values of the correlators of different types of
spins remain undefined. It should be noted that if we
neglect the difference between the short-range and
long-range magnetic orders (which is an adequate
approximation below the Curie temperature), then

 and  are related in an obvious way, as follows:

(12)

In this case,

(13)

( ) [ ]
( ) [ ]

  + − − =
  + + − 

(α)
W αα

αα (α)
W αα

2cosh 1 3exp 2
;

2cosh 1 exp 2

h j
Q

h j

= =(α) (α)
W αα αα, ( ),Wh H kT j J zkT

(α)
WH

= σ
−

(α)
W αβ β β,

1
z H J c

z

ασ
α0 1< σ <

ασ

ασ

[ ]
 
 σ =

 − + +  

(α)
W

α (α)
αα W

2sinh
( ) .

exp 2 1 2cosh

h
T

j h

αα,Q

αβQ ασ

2
αα α αβ α β, .Q Q= σ = σ σ

αβ α β αα ββsgn( )sgn( ) .Q Q Q= σ σ
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It is reasonable to assume that formula (13) is an
adequate approximation for  even if the  values
are calculated with accounting for the short-range
magnetic order above the Curie temperature.

It follows from formulas (6)–(13) that magnetism
leads, first of all, to a change in the mixing energy 
within the considered model; moreover, the latter
turns out to be dependent on the temperature and the
concentrations of the components due to the adopted
form of correlators (8) and (12) with Weiss fields (10).

Next, we determine the free mixing energy that
includes, in addition to mixing enthalpy (5), the con-
tributions of configurational entropy  and mag-
netic entropy 

(14)

(15)

(16)
We define the configurational entropy within the

model of a regular solid solution in the following way:

(17)
To take into account the contribution of the mag-

netic entropy, we use the early published approach
[14, 28], in which the free energy is calculated from the
enthalpy using the Hellmann–Feynman theorem. As
a result, we have:

(18)

(19)

At the temperatures substantially higher than the
Curie temperature, at which the correlation of neigh-
boring spins is negligible, we find from Eq. (18) that

 and expression (14) is reduced to the free
mixing energy of a binary alloy in the standard model
of a regular solid solution [22].

3. PARAMETRIZATION OF THE MODEL
3.1. Approximation 

of Concentration-Independent Parameters
For pure component α, the exchange energy is

related to the Curie temperature by relation
 [29]. According to the ab initio

calculation results, the exchange energy in pure iron is
 = 0.18 eV/at. [30]. Hence, we obtain a correction

factor value of q ≈ 0.5 when taking into account an

αβQ ααQ

αβ,v

conf
mixS

magn
mix :S

( ) = +PM magn
mix α mix mix,{ } ;G T c G G

= −PM PM conf
mix mix mix ;G H TS

= −magn magn magn
mix mix mix .G H TS

= −conf
mix α αln .S kc c

= −

−

 
0
αα αα

magn 0
mix α αα αα α αα αα

0 0
mix

Cr Fe FeCr,

J J

G c Q dJ c Q dJ

c c I

αβ ββαα
mix
αβ αβ αβ αα αα ββ ββ

0 0 0

2 .
J JJ

I Q dJ Q dJ Q dJ= − −  

≈magn
mix 0,G

= =(α)
С α αα( 1)kT c qJ

FeFeJ
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1034 RAZUMOV, GORNOSTYREV

Table 1. Model parameters (eV/at.) obtained by fitting the mixing enthalpy to the ab initio calculation results [10]

cCr

0.5 0.070 –0.28 0.095 –0.38 –0.10 –0.01

PM
mixH PM

FeCrv
FM
mixH FM

FeCrv = −mix(FM) FM PM
FeCr FeCr FeCrJ v v ( )= − + +mix(FM)

FeCr FeCr FeFe CrCr 2J J J J
experimentally known Curie temperature value of
 = 1043 K.

Following [11] and assuming that similar relation
kTN = –qJCrCr is valid for the Néel temperature of
chromium, we determine the  value. Hence, we
have  = –0.054 eV/at. when taking into account
that the experimental value the Néel temperature is
TN = 311 K.

Remaining unknowns  and  can be deter-
mined using the ab initio calculation results for the
mixing enthalpy [10] in paramagnetic (Qαβ = 0) and
ferromagnetic states, and equations (6) and (7). First,
we find  assuming that the concentrations of the
Fe and Cr components are 0.5 and Qαβ = 0 in the para-
magnetic state. Next, we take into account the Jαα val-
ues defined above for the ferromagnetic state and find
JFeCr. For this, the values of the corresponding correla-
tors at T = 0 K should be taken as Qαβ in formula (7).
In this case, QFeFe = 1. It is well known that the QCrCr
correlator at T = 0 K alternates its sign at a certain
chromium concentration [16]. At a low chromium
concentration, the chromium spins are oriented oppo-
sitely to the iron spins (QFeCr = –1) and, consequently,
become codirectional with respect to each other, so

(Fe)
CT

CrCrJ
CrCrJ

νPM
FeCr FeCrJ

νPM
FeCr
PHYSICS OF METAL

Fig. 1. Mixing enthalpy of the FeCr binary alloy in the fer-
romagnetic (1) and paramagnetic (2) states as a function of
the chromium concentration. The circles denote the ab
initio calculation results [10], the solid lines correspond to
the approximation of the calculated data by polynomials
(22), and dashed lines 1 ' and 2 ' are plotted in the approxi-
mation of concentration-independent parameters (see
Table 1).
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that QCrCr = 1. The obtained results of the assessment
are given in Table 1. It should be noted that the alloy
becomes antiferromagnetic at a high chromium con-
centration and QCrCr = –1, which is not taken into
account in this approximation.

It follows from the results of comparison with
experimental data that the  value is overestimated
(in absolute value), which may be due to the unac-
counted contribution of the vibrational entropy to the
free energy of the alloy. According to [11, 31], the mix-
ing energy of the Fe–Cr alloy is described by the fol-
lowing empirical formula:

(20)

Hence,  = –0.26 eV/at. in the ferromagnetic
state (T = 0 K) and  = –0.11 eV/at. in the para-
magnetic state (T ≈ 1200 K).

It should be noted that the position of the dome of
the two-phase region in the model of a regular solid
solution [22] is determined by the following relation:

(21)

so we obtain Tbinod ≈ 650 K when choosing  =
‒0.11 eV/at., while the top of the dome of two-phase
region α1 + α2 in the phase diagram of the Fe–Cr alloy
in the absence of an ordered σ phase [7, 32] is located
at  ≈ 800 K. It is logical to assume that an
increase in the decomposition temperature by 150 to
200 degrees compared to the estimate based on the

 value is caused by the presence of the magnetic
ordering that is substantial at this temperature. Fur-
ther, we use empirical value  = –0.11 eV/at., while
the rest of the parameters are taken from Table 1. The
mixing enthalpy of the FeCr alloy in the approxima-
tion of concentration-independent parameters is
shown by dashed lines in Fig. 1. As can be seen from
Fig. 1, this approximation describes well the paramag-
netic state, but does not reproduce the features of the
behavior of Hmix at low chromium concentrations in
the ferromagnetic state.

3.2. Concentration Dependences of the Mixing 
and Magnetic Exchange Energies

The approximation of concentration-independent
energy parameters does not allow one to take into
account the change in the sign of the mixing energy at
low temperatures in the range of chromium concentra-

νPM
FeCr

( )= − −(exp)
FeCr 0.26 1 0.000467 (eV at.).Tv

FM(exp)
FeCrv

PM(exp)
FeCrv

( ) [ ]= − −PM
binod FeCr Cr Cr Cr1 ln (1 ) ,kT c c cv

PM
FeCrv

binodT

PM
FeCrv

PM
FeCrv
S AND METALLOGRAPHY  Vol. 122  No. 11  2021



MODEL OF DECOMPOSITION OF ALLOY WITH TWO MAGNETIC COMPONENTS 1035

Fig. 2. Exchange energy JFeCr(cCr) from the data of ab ini-
tio calculations [10] and formula (27) when choosing
QCrCr = 1 (curve 1) and QCrCr = –1 (curve 2).
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tions below 10%, due to which the diluted Fe–Cr alloy
should remain stable at low temperatures [4, 10, 11].

In [10], the mixing enthalpy of the Fe–Co–Cr sys-
tem was calculated by the EMTO–CPA method in the
paramagnetic and ferromagnetic states for arbitrary
concentrations of the components. These data are
insufficient for the parametrization of the discussed
model because all  values must be known for deter-
mining the  values at intermediate temperatures
(see formula (7)). In [33], the JFeFe, JCrCr, and JFeCr
exchange energy values were calculated at a chromium
concentration of less than 30 at %, but their behavior
at high concentrations is unknown. We restrict our-
selves to the approximation, in which Jαα does not
depend on the concentration of the components. This
simplification is supported by the fact that the depen-
dence of JFeCr on the chromium concentration is more
pronounced in comparison with JCrCr, and especially
in comparison with JFeFe [33]. The parameterization
proposed below should be understood as a transition
to effective exchange energy JFeCr that contains the
unaccounted concentration dependence of the
exchange energies.

The ab initio calculation results [10] for the mixing
enthalpy of the Fe–Cr alloy in the ferromagnetic and
paramagnetic states are approximated by the following
polynomials of type  (see Fig. 1), where n
takes values in the range from 1 to 4:

(22)

The  coefficients (eV/at.) are as follows:

(23)

(24)

From equation (22), we have

(25)

where  To bring into agreement with
empirical data, we take  = –0.0917 eV/at., which
corresponds to the introduction of a correction (the
same value as in Section 3.1) into the zero contribution
of the chromium concentration to the  energy.

The magnetic contribution to the mixing energy in
the ferromagnetic state is

(26)

Finally, the exchange energy of unlike atoms is cal-
culated using formula (7) at T = 0 K. Since the pro-
posed model does not take into account the antiferro-
magnetic phase transition at TN = 311 K, it is prefera-
ble, just like in the previous section, to choose QFeFe = 1,
QCrCr = 1, and QFeCr = –1 when calculating JFeCr,
which enables the most adequate description of the

αβJ
mixH

−FM(PM) 1
α
n

niA c

( )−= −FM(PM) FM(PM) 1
mix Cr Cr Cr1 .n

nH A c c c

FM(PM)
nA

( )= − −FM 0.33, 3.68, 6.28, 3.60 ,A

( )= − −PM 0.26, 0.03, 0.15, 0.03 .A

−=PM 1
FeCr Cr ,n

nB cv

= − PM.n nB A
1B

PM
FeCrv

( ) −= −mix(FM) PM FM 1
FeCr 1 1 Cr .n

n nJ A A c
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behavior of JFeCr at low chromium concentrations. As
a result, we have

(27)

Figure 2 shows the results of calculating the 
values when choosing QCrCr = 1 (curve 1) and QCrCr =
–1 (curve 2). As can be seen from Fig. 2, the concen-
tration dependence turns out to be very strong, so that
it cannot be neglected when analyzing the role of mag-
netism in the decomposition. In this case, the choice
of the QCrCr value has an insignificant effect on the
value and qualitative behavior of 

3.3. Temperature Dependences of Qαα

Figure 3 shows the temperature dependences of
correlators Qαα and the corresponding mean values of
reduced magnetic moments σα that are constructed
using formulas (8) and (11) with accounting for the
concentration dependence of JFeCr (Fig. 2) in different
alloy compositions. The fact that the subsystems of
two types of atoms have identical Curie temperature
TC (at which σα = 0 is attained) is a common feature.
The Qαα correlators have a break point at T = TC and
remain nonzero at T > TC, i.e., at the temperatures
corresponding to the conservation of only short-range
magnetic order. The QCrCr correlator takes positive
values at low temperatures and low chromium concen-
trations (Fig. 3a, curve 2) and negative values in other
cases. Moreover, the reduced magnetic moments of
chromium (σCr) and iron (σFe) are directed oppositely
in any case (compare curves 1 ' and 2 ' in Fig. 3).

( )= − + +mix(FM)
FeCr FeCr FeFe CrCr 2.J J J J

FeCrJ

FeCr.J
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Fig. 3. Temperature dependences of the QFeFe (1) and
QCrCr (2) correlators and the corresponding mean values
of reduced magnetic moments σFe (1') and σCr (2') at
(a) cCr = 0.1 and (b) cCr = 0.4.
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Fig. 4. Solubility curve of the binary Fe–Cr alloy for the
following cases: (1) in the absence of a magnetic contribu-
tion to the free energy with a concentration-independent
mixing energy (vFeCr = –0.11 eV/at.); (2) in the absence of
a magnetic contribution to the free energy with a concen-
tration-dependent mixing energy; (3) in the approxima-
tion of concentration-independent energy parameters;
(4) taking into account the dependence of the energy
parameters on the concentrations of the components;
(5) the experimental solubility curve according to the pub-
lished data [34]; (6) the calculated spinodal curve taking
into account the concentration dependence of the
parameters.
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4. PHASE DIAGRAM OF THE Fe–Cr ALLOY

The boundaries of the phase instability region are
determined from the following system of equations
that describe the equality of the chemical potentials of
the components in the resulting phases (phase equilib-
rium condition) [22]:

(28)

Figure 4 shows the results of calculating the solu-
bility curve of the binary Fe–Cr alloy in various
approximations considered above (curves 1–4) com-
pared to the experimental data (curve 5). For a correct
comparison with experiment, the ordered σ phase and
associated two-phase regions α1 + σ and α2 + σ are
excluded from consideration in the diagram when

∂ ∂ −= =
∂ ∂ −

(2) (1)
mix mix mix mix

eqv(2) eqv(1)
α α(1) (2) α α

.G G G G
c c c c
PHYSICS OF METAL
analyzing the decomposition of the solid solution by
reaction α → α1 + α2.

The best agreement with the experiment is
achieved when the concentration dependence of the
parameters is taken into account (curve 4). Herewith,
the model predicts an anomalously high solubility of
chromium (~8 at % at T = 500 K). The latter fact has
no reliable experimental confirmation [21], since the
known experimental data refer to higher temperatures
(curve 5) and become extremely contradictory at low
temperatures.

To understand the morphological features of the
precipitates settled during the decomposition of the
alloy, it is also useful to consider the spinodal (Fig. 4,
curve 6) that limits the region of absolute instability of
the homogeneous state from above. According to the
definition given in [22], the free energy of the alloy
inside the spinodal region is a convex function of con-
centration, i.e.,

(29)

so that the alloy turns out to be unstable with respect
to composition f luctuations. Between the spinodal
and the solubility curve, decomposition can occur
after the incubation period, according to the mecha-
nism of nucleation and growth of precipitates. Even if
the transition from the regime of absolute instability to
the regime of nucleation and growth of precipitates

( )2
mix Cr

2
Cr

0,
G c

c

∂ <
∂
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with varying temperature or composition in a real alloy
is accomplished smoothly, i.e., without a physically
distinguished line [35], the spinodal is a clear qualita-
tive reference point that allows one to estimate the ten-
dency of a homogeneous alloy to decompose. The
spinodal constructed within the developed model
(Fig. 4, curve 6) turns out to be quite close to the
spinodal found experimentally [36].

5. DISCUSSION

A sequential model is proposed for describing the
decomposition of an alloy with two magnetic compo-
nents that generalizes the theory of regular solutions
by taking into account the concentration dependences
of the mixing energies and exchange interaction
parameters. In contrast to the previously proposed
approaches (see discussion in [15]), we take into
account the difference in the behavior of the correla-
tion functions of the magnetic moments of atoms of
different types. The latter is especially important for
the FeCr alloy with different signs of the QFeFe and
QFeCr correlation functions, which makes it inadmissi-
ble to use approximations of type Qαβ = Q. In addition,
the model takes into account the short-range magnetic
ordering above the Curie temperature, which is neces-
sary for a correct description of the solubility limit in
alloys with magnetic components [13].

To determine the contribution of the magnetic
entropy to the free energy of the alloy, we used the
Hellmann–Feynman theorem [28]. In the proposed
model, this contribution is insignificant at low impu-
rity concentrations (<5 at %), but becomes important
when analyzing the stability conditions for a homoge-
neous alloy at high concentrations.

The model was parameterized using the published
ab initio calculation results [10, 11, 33]. However, the
use of the calculated value of mixing energy 
would lead to an overestimation of the onset tempera-
ture of decomposition by about a factor of two; a sim-
ilar conclusion was also made in [19]. It can be
assumed that this is caused by the unaccounted contri-
bution of the vibrational entropy to the free energy of
the alloy, the role of which in the Fe–Cr system can be
large [37]. Within the developed model, the contribu-
tion of the vibrational entropy was determined by the
transition to the effective  parameter value agreed
with the experimental data.

The obtained boundaries of solubility and spinodal
decomposition in the Fe–Cr system (Fig. 4) are in
good agreement with the known experimental data
[34, 36]. Furthermore, a correct accounting for the
magnetic contributions to the free energy, as well as
the concentration dependence of the model parame-
ters, was needed for a correct description of the behav-
ior of the system under consideration. It should be
noted that the latter circumstance is especially import-

PM
FeCrv

PM
FeCrv
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
ant for alloys with magnetic components, since the
interaction energy between Cr atoms depends on the
magnetic state that varies, in turn, with a change in the
concentration of the alloying element.

Though a conclusion follows from the ab initio cal-
culation results and the results given in Fig. 4 that the
Fe–Cr alloy is anomalously stable at a low chromium
content [4–6], the currently available experimental
data do not reveal such a tendency [21]. Most of the
experiments were carried out at T > 500 K, and the use
of these data for low temperatures should be consid-
ered an extrapolation [21]. Therefore, the question of
the solubility of chromium in iron in the low tempera-
ture limit remains controversial and requires further
investigations.

6. CONCLUSIONS
To describe the decomposition processes in the bcc

FeCr system on the basis of the ab initio calculation
results, a sequential model that takes into account the
configurational and magnetic contributions to the free
energy of the alloy has been formulated. The calcu-
lated boundaries of solubility and spinodal instability
of the Fe–Cr system are in good agreement with the
known experimental data. It is shown that the anoma-
lous behaviors of the mixing energy and the solubility
limit of chromium at low temperatures are associated
with the concentration dependence of the Fe–Cr
exchange interaction energy.
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