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Abstract—The thermodynamics and kinetics of decomposition of a Fe–Cu alloy are investigated in the con-
text of a simple ab initio parameterization model taking into account the concentration dependence of the
magnetic contribution to the free energy. It is shown that taking into account a difference between the short-
range and long-range magnetic orders near the Curie temperature is very important for calculating the solu-
bility of copper in iron. The solubility of copper in bcc iron and the stability limit of a homogeneous state
(physical spinodal) are evaluated via the kinetic Monte Carlo method. The impact of structural defects (dis-
locations and grain boundaries) on these curves, as well as on the kinetic time–temperature—transformation
(TTT) diagram, is also discussed.
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1. INTRODUCTION

In the last years, there is a high interest in using
copper as a doping element in the fabrication of steel
[1–3] due to the reinforcing effect of bcc-Cu nano-
precipitates coherent with a matrix which appear at
the cooling of a solid solution [4]. When those enrich
~10 nm in size, their coherence with iron matrix van-
ishes and the lattice transforms into an fcc crystal
structure, leading to embrittlement of the material [5,
6]. Thus, the kinetics of initial stages of decomposi-
tion, as well as mechanisms of possible stabilization of
bcc-Cu nano-precipitates is of particular attention.
Studying this challenge necessitates a sequential
model that takes into account the concentration
dependence of interatomic interactions and the role of
magnetism in the development of phase transforma-
tion [7–9].

Indeed, the deviation of solubility of copper in iron
from the Arrhenius law, observed within a broad range
above and below the Curie point, TC, cannot be
explained in the context of classical models (such as
the model of regular solid solution [10]) [11–13]. The
essential role of magnetism in the decomposition of
iron alloys was emphasized by Zener [14, 15]. Mean-
while, before now, the change in the magnetic energy
upon the decomposition of the Fe–Cu alloy was
neglected [16–18], or there was used a quite simplified
Cu–Cu interaction potential depending on only the
temperature [7] at accounting no difference between
the solubility and stability limits of the homogeneous
state [19]. The authors of work [20] used the tempera-

ture-depending interactomic interaction parameters
that were found via the fitting to experimental data.

Since the magnetism exists in only the iron matrix,
but it is absent in the bulk of copper precipitates, the
consistent theory of decomposition of the Fe–Cu
alloy is expected to take into account the concentra-
tion dependence of interatomic interactions. The mix-
ture potentials Wmix in the para- and ferromagnetic
states of iron were calculated as a function of concen-
tration via EMTO-CPA (exact muffin-tin orbitals,
coherent potential approximation) [7] and MCE
(magnetic cluster expansion) [21] approaches. These
results can be fundamental for constructing the theory
of decomposition of the Fe–Cu alloy based on the ab
initio parametrization.

Work [9] reports the effective concentration-
depended Cu–Cu interaction potential, which
accounts for the role of magnetism via the ab initio
calculations [7], as well as the theoretical solubility
limit was calculated in accordance with experimental
data. In this respect, the present study aims to further
development of the approach proposed. Particular
attention will be paid to the thermodynamics and
kinetics of transformations in the vicinity of the Curie
temperature. In particular, the key importance to take
into account the difference between the long-range
and short-range magnetic orders will be discussed, the
nonmonotonic temperature behavior of the physical
spinodal will be established, and the effect of struc-
tural defects on the physical spinodal and the time—
temperature–transformation (TTT) diagram will be
elucidated, as well. This will enable one to thoroughly
952
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Fig. 1. Exchange energy J(c) as a function of copper con-
centration in accordance with (1) EMTO-CPA and (2)
MCE calculations; the corresponding product J(c)(1 – c)2

(1', 2').

0

5

10

15

20

25

0.2 0.4 0.6 0.8 1.0
Concentration of Cu

1

2

1 '

2 '

J,
 J

(1
 −

 c
)2 , m

R
y

describe the thermodynamic and kinetic features of
decomposition in a diluted Fe–Cu alloy, using the
concentration and temperature dependences of inter-
atomic interactions.

2. THE FREE ENERGY OF THE Fe–Cu ALLOY 
WITH A CONCENTRATION DEPENDED 

MAGNETIC CONTRIBUTION

Let us consider the configuration Hamiltonian
containing the paramagnetic (PM) state contribution,
HPM, as a series of ni [22], and the spin interaction
energy Hmag in the Heisenberg form:

(1)

where ni are the node occupation numbers (being 1, if
the Cu atom is found in the ith node 1, otherwise 0); σi
is a spin value on the ith node (a spin is assumed to be
normalized with reference to 1); Yij is a spin exchange
interaction parameter; ε is the change in the energy of
a system, caused by the introduction of a singular Cu
atom; and  is a potential of the Cu–Cu interaction
in the PM-state. In order to consider the multiparticle
interactions in the expression for HPM, let us limit our-
selves to the effective pair potential depending on the
local Cu concentration, i.e.,  = (ci), where
ci =  is the Cu concentration on the ith node in the
mean field approximation.

Subject Eq. (1) to the averaging over the atomic
and spin configurations, assuming only the nearest
spins interact and a slight variation in the concentra-
tion ci at the distances around of the lattice parameter.
After that, let us pass to the continual representation of
the internal energy density of the alloy (by neglecting
linear contributions), as follows:

(2)

where Q1 =  =  is a nearest-neighbor

spin correlator, J(c) = , νPM(c) =

. The mixing potentials Wmix(c) =

Emix(c)/[c(1 – c)] in the para- and ferromagnetic states
were calculated via the EMTO-CPA [7] and MCE
approach [21]; herewith, the mixing energy is
Emix(c) = g(c) – (1 – c)EFe – cECu, where EFe, ECu are
the energies of pure bcc Fe and Cu. In the above des-
ignations, EFe = g(c = 0) = ,  = Q1(c = 0),
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ECu = g(c = 1) = νPM(1). Accounting for  = 0,

= 1, Eq. (2) yields in the equation below:

(3)

Using the representation J(c) = J0 + J1c + J2c2 +
J3c3, the coefficients in accordance with EMTO-PCA
are: J0 = 15.2, J1 = 12.7, J2 = –1.6, J3 = 20 (mRy) and
those provided by MCE are: J0 = 13.086, J1 = 7.698,
J2 = –0.528, J3 = ‒4.523 (mRy). In both cases, the J
value increases with Cu concentration (see Fig. 1);
however, the MCE results seem to be more adequate
at large concentrations. It is worth mentioning that the
product J(c)(1 – c)2, defining the magnetic contribu-
tion in the energy (2), is found to be at least compara-
ble for the two methods (see curves 1' and 2').

The energy νPM(c) in Eq. (2) is evaluated from ab

initio (c) data. Remembering that  = 0 and
substituting Eq. (2) in the definition of Emix(c), one
obtains

(4)

It is easy to see from data [7] that the νPM(c) depen-
dence is weak that allows one to assume νPM(c) =
−28.8 mRy = const.

The local Curie temperature TC(c) can be estab-
lished from the relationship below:

(5)
which is valid in both the Curie—Weiss theory, as well
as the more accurate quasi-chemical approximation
and cluster methods [23]. Note that the Curie tem-
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Fig. 2. Curie temperature as a function of copper concen-
tration (1) in assuming J(c) = const, as well as based from
(2) MCE and (3) EMTO-CPA calculation models. The
circles correspond to experimental data [24].
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Fig. 3. Nearest-neighbor spin correlator in pure α-Fe
(1) from the empirical equation for magnetization [25],
(2) including the short-range order at T > TC, (3) after
smoothing, (4) according to the spin-lattice dynamics
model [27].
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Fig. 4. Free energy density of alloy as a function of copper
concentration at T = 700 K (1, 1'), 900 K (2, 2'), 1100 K (3,
3'), with parametrization J(c) based on (1–3) EMTO-
CPA and (1'–3') MCE models.
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perature in pure α-Fe is TC(0) = 1043 K. Figure 2 dis-
plays the TC(c) plots obtained in assuming that J(c) =
J(0) = const (curve 1), as well as the J(c) derived from
MCE (curve 2) and EMTO-CPA (curve 3) methods.
As seen, an increase in J(c) with copper concentration
leads to a convex TC(c) profile in accordance with
experimental results [24].

Figure 3 shows various variants of the nearest-
neighbor spin correlator for pure αFe: the long-range
magnetic order Q1(T) = m2(T/TC) only and the appli-
cation of the empirical equation of magnetization [25]
(curve 1); the short-range magnetic order at T > TC in
the qualitative coincidence with the Oguchi theory
[26] (curve 2); the same correlator after smoothing
(curve 3), and the correlator proposed in the model
with a spin—lattice dynamics [27] (curve 4). Note that
the correlator is a function of copper concentration
because of the TC(c) dependence (Eq. (5)). The for-
mulas for constructing the correlators are available in
Appendix A. As seen in Fig. 3, at T < TC the correlator
of the model [27] reduces considerably the degree of
magnetic order in comparison with the empirical
curve [25]. Thus, a smoothed correlator based on the
empirical m(T) function with a short-range order at
T > TC (curve 3) is further considered as preferable.

The free energy density is expressed as

(6)
where the configuration entropy S is defined in the
approximation of regular solid solution [10]:

(7)
Figure 4 displays the f(c) dependence plotted at dif-

ferent temperatures using a correlator with the short-
range magnetic order at T > TC (curve 3 in Fig. 3). The

= −( ) ( ) ,f c g c TS

= − + − −[ ln (1 ) ln(1 )].S k c c c c
PHY
main feature of the f(c) plot is a characteristic plateau
at low copper concentrations (c < 0.4), caused by the
magnetic contribution to the energy. Starting from the
homogeneous state, the decomposition tendency is
weak or missing within the plateau range; i.e., a homo-
geneous alloy remains stable relative to infinitely small
composition fluctuations in concave segments of the
f(c) curve [10]. This means that insignificant addition
contributions to the energy may lead to the emergence
of local free energy minima in a plateau range. This
seems to provoke the formation of precipitates of
intermediate composition phases observed in FeCu-
based hard alloys [28].
SICS OF THE SOLID STATE  Vol. 61  No. 6  2019



THE MODEL OF DECOMPOSITION OF A Fe–Cu ALLOY 955

Fig. 5. (a) Solubility limit of Cu in a bcc-lattice with a model parameterization via calculating J(c) by (1–3) EMTO-CPA and
MCE (1'–3') methods: (1, 1') only the long-range magnetic order accounted, (2, 2') the short-range magnetic order (smoothed
correlator) accounted, (3, 3') with a correlator of the spin-lattice dynamics model [27]; (b) solubility limits of (1) fcc Cu and (2)
bcc Fe at choosing J0 = 13.1 mRy and J1 = 12.7 mRy; the dotted lines take into account the magnetic entropy. The circles, trian-
gles, and squares are the experimental solubility data for fcc Cu in bcc Fe [6, 29, 30].
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Equation (6) describes the free energy in the alloy
with a bcc lattice. In the case of a lattice rearrangement
of copper precipitates in the bcc structure at high Cu
concentrations, Eq. (6) has to be completed with an
additional contribution:

(8)

where the energy difference between bcc and fcc cop-
per is φ ≈ 3.3 mRy [17].

3. THE SOLUBILITY OF BCC AND FCC 
COPPER AND THE ROLE OF SHORT-RANGE 

MAGNETIC ORDER
The solubility limit is calculated from the equality

of the chemical potential of phases as:

(9)

where c1 and c2 are equilibrium concentrations in
phases. The solubility of bcc and fcc copper in the bcc
iron matrix is different because Eq. (8). The known
experimental data [6, 29, 30] are referred to the solu-
bility of fcc Cu in the bcc Fe matrix. The equilibrium
of bcc Cu with a bcc Fe solid solution is metastable by
nature; i.e., it takes place at a small size of precipitates
(<10 nm) at the beginning of the alloy decomposition.
Thus the appropriate solubility limit is unknown from
experimental data.

The used mean field approximation allows one to
obtain the correct solubility limit at low concentra-
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−1 2
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tions (~0.02) [20], which is confirmed by the Monte
Carlo simulation of the decomposition of the alloy
[19]. According to the experiments, the solubility of
fcc Cu in bcc Fe is below 0.02 (at T = 1150 K) [6, 29,
30]. With that, it is evident that the solubility limit of
bcc Cu is almost 1.5 times higher because the energy
difference between bcc and fcc Cu (φ ≈ 3.3 mRy).
Thus the solubility of bcc and fcc Cu in the bcc Fe
matrix can be accurately described by Eqs. (2)–(9).

Figure 5a displays the calculated solubility of Cu in
a bcc matrix, based on the J(c) dependence obtained
via EMTO-CPA (curves 1–3) and MCE-models
(curves 1'–3'). The experimental data on solubility
limit of fcc Cu in bcc Fe were also added as reference.
It is seen that the solubility limit evaluated in consid-
ering only the long-range magnetic order (curves 1
and 1') drastically vanishes at T = TC(0) = 1043 K,
which qualitatively contradicts the experiment. The
solubility limit plotted with a smoothed correlator
taking the short-range magnetic order in account at
T > TC demonstrates the good agreement with experi-
mental data for the J(c) dependence calculated via the
EMTO-CPA model (curve 2). Meanwhile, this coin-
cidence is not fully satisfactory, because the theoreti-
cal curves describe the solubility of bcc Cu, whereas
the experimental results are referred to fcc Cu. The
choice of a correlator from the model with a spin—lat-
tice dynamics [27] slightly decreases the qualitative
agreement with experiment (curves 3 and 3'). In all
cases, choosing the MCE-based J(c) dependence
leads to underestimated solubility limit (curves 1'–3').
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Table 1. Exchange energy parameters at small copper con-
centrations, J(c) = J0 + J1c

EMTO-CPA MCE Fitting (Fig. 5b)

J0, mRy 15.2 13.1 13.1
J1, mRy 12.7 7.70 12.7
Since the solubility limit is defined by the general
tangent rule (9), it remains independent on the J(c)
function at large c, making thus predominant only
coefficients J0 and J1 (see Table 1). A decrease in J0
yields the solubility limit shifted to the right, whereas a
decrease in J1 causes the shift of the solubility limit to
the left. Furthermore, the value of J0 = 15.2 mRy
found via the EMTO-CPA calculations seems to be
overestimated. Earlier, the independent evaluation of
J0 = 14 mRy was successfully used in the same tem-
perature range in the theory of phase transformation
in carbon steel [31]. The best agreement with experi-
ment was found for J0 = 13.1 mRy (from MCE) and
J1 = 12.7 mRy (from EMTO-CPA). Thus, the solubil-
ity limit of fcc Cu is consistent with experiment at
T < TC(0) (Fig. 5b, curve 1). However, it deviates to
the left from experimental values at high T tempera-
tures, which can be due to neglected contribution of
the entropy nature.

The rough estimation of the role of configuration
magnetic entropy Sm can be performed using the Ising
model with a spin of 1/2, for which [23]:

(10)

Meanwhile, the local magnetization in Eq. (10) can be
replaced by a spin correlator of m →  at T > TC. The
dotted curves in Fig. 5b are plotted taking into account
Eq. (10) in the total entropy and exhibit a negligibly
small effect. The deviation of the solubility limit from
experimental values is likely due to other contributions
that remain beyond the consideration, e.g., the vibra-
tional entropy.

4. THE Cu–Cu INTERACTION POTENTIAL
AS A FUNCTION OF CONCENTRATION.

A PHYSICAL SPINODAL
According to the theory of spinodal decomposition

[10, 32], the alloy loses stability relative to infinitely
small long-wave composition f luctuations in the con-
vex segment of the f(c) curve. Therefore the stability
limit of the uniform state (spinodal) is determined by
the inflection point of the f(c) curve. The decomposi-
tion between a spinodal and a binodal obeys the mech-
anism of f luctuation nucleation and growth of precip-
itates. As follows from [33, 34], the classical spinodal

{
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= − − + +

+ − −
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(1 ) ln(1 )] .

mS k c m m

m m

1Q
PHY
is only a theoretical concept inherent to the mean field
approximation and to more accurate methods [20].
The authors of work [35] have assumed that classical
spinodal does not look like a physically dedicated line
of the phase diagram for real alloy. In connection with
this, a schematic phase diagram including the classical
nucleation (below the binodal) and spinodal nucle-
ation (above the spinodal) was plotted; the transition
between these areas was suggested to be gradual.

Works [36, 37] were dedicated to the discussion of
the so-called physical spinodal, or pseudo-spinodal,
being the stability limit of a homogeneous alloy rela-
tive to heat composition f luctuations (which are not
infinitely small). This line was found to exist in either
the systems with a long-range potential, or the large
molecular weight, such as polymers [38]. As shown in
study [19] via the kinetic Monte Carlo (KMC) simu-
lation in a system with a short-range potential (similar
to the potential in a FeCu system), the incubation
period of homogeneous nucleation tends to the infin-
ity far from the solubility limit and the classical
spinodal. The obtained line in a phase diagram is a
physical spinodal and expresses the fact that the f luc-
tuation enough for the appearance of critical nucleus
is impossible in a homogeneous alloy at a sufficiently
low concentration. Thus the physical spinodal limits
the homogeneous nucleation area on the phase dia-
gram.

Here we are first to show the KMC calculation of
the physical spinodal for a FeCu system with a real
concentration-depending Cu–Cu interaction poten-
tial. The local concentration was considered by aver-
aging the occupation numbers over the first coordi-
nation sphere around the atoms of each interacting
Cu–Cu pair adjacent to nodes of the initial and final
positions in jumping. The simulations were imple-
mented for a supercell of 70 × 70 × 70 unit bcc cells.
In order to find a spinodal at each set temperature T, a
series of calculation was conducted at different average
concentrations c for determining a c value at which the
incubation period abruptly changes, so that no
decomposition is observed within technically achiev-
able calculation times.

The Cu–Cu interaction potential as a function of
concentration can be found from the expansion of the
g(c) function in power of c:

(11)

where

(12)

in accordance with Eq. (2).

= + + ν 2
0 1 eff( ) ( ) ,g c K K c c c

= − = =
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Fig. 6. Cu–Cu interaction potentials as a function of Cu
concentration, using EMTO-CPA-calculated J(c). T =
1200 K (1), 1100 K (2), 1000 K (3), 900 K (4), 800 K (5),
700 K (6).
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Fig. 7. Incubation period of the decomposition in a homo-
geneous alloy (the sample size is 70 × 70 × 70 cells) as a
function of Cu concentration at T = 800 K (1), 900 K (2),
1000 K (3), 1100 K (4). The calculation is implemented via
the КМC method with the potentials given in Fig. 6. The
time is expressed by the average number of jumps per
Cu atom.
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By virtue of summation over coordination spheres
(CSs), νeff(c) = , the univocal deter-

mination of the potential (c) from Eqs. (11) and
(12) is not possible. However, according to work [7],
the contribution of the first CS is predominant. Then
it is sufficient to consider the nearest neighbors, i.e.,
z1 = 8, zp = 0, and p > 1. Thus the concentration-
depending Cu–Cu interaction potential is determined
from Eqs. (11) and (12) according to the below rule:

(13)

Note that the PM-state from Eqs. (2) and (11)–(13)
results in (c) = νPM(c)/4.

Figure 6 displays the Veff(c) potentials calculated
from Eqs. (2) and (10)–(12) for various temperatures,
using the EMTO-CPA approach for the J(c) function
and the smoothed spin correlator accounting for the
short-range order at T > TC (curve 3 in Fig. 3, see for-
mulas in Appendix A). As expected from the free
energy profile plotted in Fig. 4, the main qualitative
feature of Veff(c) is an increase in stability of a homo-
geneous alloy due to the magnetism, i.e., weakening of
the potential at low concentrations within a range of
intermediate temperatures (immediately above and
below the TC point of pure iron). At the same time, the
potential becomes stronger in the volume of copper
precipitates (c ~ 1) on account of the effective contri-
bution from the magnetism of a matrix, which is
expected to shift the solubility limit (but not the stabil-
ity limit of a homogeneous state) to the left in compar-
ison with a paramagnetic state.


eff( ( ))/2p pp

z V c
eff
pV

= νeff
eff( ) ( )/4.V c c

eff
PMV
PHYSICS OF THE SOLID STATE  Vol. 61  No. 6  2019
Figure 7 illustrates the incubation periods versus
the concentration at various temperatures, calculated
using the above potentials. The common qualitative
peculiarity is a drastic change in the incubation period
with a decrease in c to a critical value corresponding to
the achievement of the physical spinodal.

Figure 8 shows the solubility limit of Cu in the bcc
lattice (curve 1) and the physical spinodal (curve 2),
both calculated via the Monte Carlo method with
potentials given in Fig. 6. The main common feature is
a nonmonotonic temperature behavior of the physical
spinodal, because of increased stability of the homo-
geneous alloy relatively small composition fluctua-
tions under the action of the magnetism. On the other
hand, a classical spinodal determined by the inflection
point in the f(c) plot was not manifested as a physically
dedicated line in the Monte Carlo simulations and is
therefore not given here.

Here we discuss the qualitative peculiarities of the
model. The quantitative estimation of the position of a
physical spinodal may depend on the behavior of the
J(c) exchange energy at the intermediate concentra-
tions, including the coefficients J2 and J3 that are dif-
ferent for EMTO-CPA and MCE calculations (see
Fig. 1). Meanwhile, since the J(c) energy is present in
Eq. (2) in the form of the J(c)Q1(c)(1 – c)2 product,
where the correlator Q1 and the multiplier (1 – c)2 van-
ish at high Cu concentrations, the discrepancy
between ab initio EMTO-CPA and MCE simulations
(Fig. 1) is expected to make no influence of the quali-
tative conclusions.
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Fig. 8. (1, 1') Solubility and (2, 2') stability limits of a
homogeneous state, evaluated via the KMC method using
the potentials given in Fig. 6, in a lack (1, 2) and in the
presence (1', 2') of a dislocation with a segregation energy
Esegr = –4 mRy. The curve 1'' is the solubility limit calcu-
lated from the chemical potential equality of phases using
Eq. (9).
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5. A KINETIC TTT DIAGRAM. THE EFFECT 

OF STRUCTURAL DEFECTS
ON THE TRANSFORMATION KINETICS

A typical kinetics of decomposition to the right of a
physical spinodal in the phase diagram is as follows.
The first stage is characterized by the formation of
small clusters. The amount of atoms in a solid solution
is determined by the Gibbs—Thomson effect rather
than by their migration time to the nearest cluster, i.e.,
by the change in the equilibrium conditions above the
surface of small nucleus [39]. Large precipitates grow
due to the evaporation of small ones, obeying the Lif-
shitz–Slezov kinetic law [40]. The larger is the average
cluster size the lower is the amount of atoms is a solid
solution, approaching the equilibrium solubility limit.
As shown in work [41], the growth of precipitates is
substantially accelerated at the onset stages due to the
vacancy mechanism of diffusion, because vacancies
are captured by clusters. Thus the diffusion is imple-
mented by not only singular atoms in a solid solution,
but also by the migration of clusters themselves.
Although a similar mechanism (collision and merging
of droplets as a result of their heat diffusion) was ear-
lier discussed by Binder and Schtauffer [42], it is
beyond the consideration in most decomposition
models. Since the KMC software used in work [8, 9]
implements the direct exchange between the nearest
neighbors, the estimation of characteristic times
necessitates the introduction of the amendment taking
into account the acceleration of the transformation
due to the capture of vacancies by clusters.

Curves 1 and 2 in a phase diagram (Fig. 8) are sep-
arated by the area where the decomposition may start
only in accordance with a mechanism of heteroge-
neous nucleation, i.e., after the Cu atoms are segre-
gated at the structural defects (dislocations, grain
boundaries, etc.). Curves 1' and 2' in Fig. 8 are referred
to the solubility limit (calculated from the remaint
concentration in the matrix upon completion of the
decomposition) and the stability limit of a homoge-
neous state at introducing a single dislocation which is
simulated via the change in the Cu energy by a value of
Esegr = ‒4 mRy in a tube with a radius equal to a lattice
parameter, passing through the center of the cube. It is
obvious that the solubility limit remains almost
unchanged owing to a small segregation capacitance of
a dislocation. At the same time, the stability limit is
noticeable shifted to the left, approaching the solubil-
ity limit. The transformation kinetics is usually
described via the TTT (time–temperature–transfor-
mation) diagram that allows one to determine the time
necessary for enriching a set degree of decomposition
at a defined temperature [7, 43, 44]. The current time
at the КМC-simulation is estimated as follows:

(14)

where P is a number of permutations of the neighbor-
ing atoms (per a Cu atom), τ = d2/D is a time for suc-

= τ( ) ,t K T P
PHY
cessful jump of a Cu atom to the neighboring site, d =
0.248 nm is a distance between the nearest nodes in a
bcc Fe lattice, D is a coefficient of diffusion known
from the experiment [45, 46], and K(T) is a correction
factor considering some features of the transformation
kinetics (accelerated diffusion due to the capture of
vacancies by clusters, losses of atoms with time in a
solid solution owing to precipitation, accelerated dif-
fusion in the area of dislocations and grain boundar-
ies, change in surface energy of precipitates because
the partial violation of the lattice coherence in the
interface, sensitivity limit of experimental techniques,
etc.).

The analysis reveals (see Appendix B) the relevance
to use the K(T) temperature dependence in the form:

(15)

where Q = 55 mRy in a lack of defects, 102 mRy upon
nucleation of precipitates at the dislocations, 141 mRy
upon nucleation of precipitates at the grain boundaries
(the Q parameter serves for the approximation of the
kinetic curve and it is not an activation energy).

The known experimental data for a TTT diagram
[6] are referred to the area between curves 1 and 2 (see
Fig. 8), where, in accordance with our model, the
decomposition is possible in only the presence of
structural defects. Figure 9 displays the TTT diagram
constructed by introducing a single dislocation or a
plane grain boundary in a cubic sample (with dimen-
sions of 80 × 80 × 80 unit cells). The characteristic
scale of the defect was chosen to be equal to 2 of a lat-
tice parameter. The degree of decomposition was cal-
culated similarly with that in work [8]). It is seen that

= −0( ) exp[ / ],K T K Q kT
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Fig. 9. КМC-simulated kinetic TTT diagram. The curves
correspond to the degree of decomposition of 10% at sim-
ulating the presence of (1, 1') dislocation and (2, 2') grain
boundary with a segregation energy Esegr = –8 mRy; (1),
(2) without and with (1'), (2') a K(T) correction coeffi-
cient. Curve (3) is referred to experimental data [6].
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in the absence of K(T) the rate of decomposition
decreases with decreasing of temperature much faster
than in the experiment. On the other hand, the use of
K(T) enables one to achieve the adequate TTT dia-
gram during the nucleation of precipitations at both
the dislocation and the grain boundary. Unfortu-
nately, the K0 coefficient chosen by fitting to experi-
mental data cannot be evaluated (see Appendix B).

Thus, the qualitatively adequate TTT diagram is
ensured via the diffusion acceleration and preferable
nucleation of precipitations at the defects. The
decomposition in the phase diagram area correspond-
ing to experimental data is not implementable in a lack
of defects in the present model.

6. CONCLUSIONS

The model of decomposition of a FeCu alloy was
developed at accounting for the concentration depen-
dence of the magnetic contribution to the free energy.
The correct calculation of solubility limit necessitates
taking into account the difference between the short-
range and long-range magnetic orders in the vicinity
of the Curie temperature. The solubility limits calcu-
lated for bcc and fcc Cu in a bcc Fe matrix were found
to be consistent with experimental values. A concen-
tration-depending Cu–Cu interaction potential, nec-
essary for the Monte Carlo simulation of the decom-
position of alloy, was proposed, as well. The solubility
and stability limits of a homogeneous state (physical
spinodal) were shown to be different. Furthermore,
the physical spinodal exhibits the nonmonotonic tem-
perature dependence. The presence of structural
defects, such as dislocations) was found to shift the
PHYSICS OF THE SOLID STATE  Vol. 61  No. 6  2019
stability limit to the left, approaching it to the solubil-
ity limit. The influence of structural defects on the
kinetic TTT diagram was discussed, as well.

APPENDIX A

The Nearest-Neighbor Spin Correlator

A nearest-neighbor spin correlator in considering
the long-range magnetic order is determined by the
local magnetization Q1(T, c) = m2(T/TC, c), where
the m(T/TC, c) dependence obeys the empirical equa-
tion [25]:

(A.1)

where τ = T/TC(c).
The short-range order at T > TC is taken into account

in the qualitative agreement with Oguchi theory

(A.2)

The correlator (A.2) exhibits a nonphysical kink at T =
T*, which is eliminated by smoothing (ΔT = 150 K)

(A.3)

In this case, the magnitude of the short-range mag-
netic order at T > TC is close to that derived in works
[47] via the spin-lattice dynamics for a Fe–Ni alloy.

The correlator obtained in the model of spin-lattice
dynamics [27] for bcc Fe is also used for comparison.
It is approximated by the expression: Q1(T) = 1 –
1/(1 + 0.38exp[–4.5(T – TC)/TC]) assuming the TC(c)
dependence for a FeCu alloy.

APPENDIX B

The Evaluation of the K(T) Coefficient
in the Construction of a TTT Diagram

Represent the K(T) function as a product K(T) =
K0KV(T)KSS(T)Kdef(T).

A multiplier KV(T) accounts for the diffusion accel-
eration due to the capture of vacancies by clusters. If
the diffusion is carried out by clusters of two atoms
(which can be valid at the decomposition onset), then
KV(T) ~ exp[–QV/kT]/3, QV = 25.7 mRy [16].

A multiplier KSS(T) describes the fraction of Cu
atoms in a solid solution, which varies with time and
approaches the equilibrium solubility limit at attaining
the local equilibrium, then KSS(T) ~ exp[–ν/kT]/c0,
where ν ~ 28.8 mRy.

τ = − τ − τ3/2 4 1/3( ) [1 0.35 0.65 ] ,m

 <=  >
= β β =

2

1 2

C

( ), if *
( ) *( *) , if *

* , 0.98.

m T T T
Q T Tm T T T

T
T T

+Δ

−Δ

=
Δ �

/2

1 1
/2

1( ) ( ') ' .
T T

T T

Q T Q T dt
T
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Table 2. Diffusion coefficient ratio of Cu in the bulk, on the
dislocation and at the grain boundary of a bcc-Fe matrix in
accordance with data [45, 46, 48, 49]

 (Cu in Fe)  (Cu in Cu)  (Cu in Fe)

567 85 18

1000 K
bulk
800 K
bulk

D

D

1000 K
disl
800 K
disl

D

D

1000 K
GB
800 K
GB

D

D

A multiplier Kdef(T) accounts for the diffusion
acceleration on defects. Based on the fact that the rate
of diffusion behaves as ~exp[–Q/kT], as well as using
the known coefficients of diffusion of Cu in the bulk,
on the dislocation and at the grain boundary in a bcc
Fe matrix (see Table 2), one obtains Kdef(T) ~
exp[‒Qdef/kT], where Qdef = 47 mRy for a dislocation
and 86 mRy for a grain boundary. The use of Kdef(T)
parameter implies that nucleation and growth of pre-
cipitations are controlled by the diffusion on the
appropriate defects.

The temperature-independent K0 coefficient in the
construction of a TTT diagram was chosen by fitting to
experimental data. Among the neglected factors, one
can mention the real density of the number of defects
(calculations involve a single dislocation or a grain
boundary) and the variation in the surface energy of
precipitations because the partial violation of the lat-
tice coherence at the interface.
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