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Recent ab initio studies of the role of magnetism in the decomposition of α-Fe–Cu alloy are analyzed. It is
shown that the calculations based on effective pair potentials obtained earlier in the framework of the partial
disordered-local moment model strongly overestimate the magnetic contribution. A simple model with the
ab initio parametrization is formulated. It allows us to calculate the solubility limits for the bcc and fcc copper
precipitates in α-Fe, which are in good qualitative agreement with the experimental data.
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Fig. 1. (Color online) Monte Carlo results (curve 1) for the
solubility limit of Cu and (curve 2) for the stability limit of
the homogeneous state with the effective potential sug-
gested in [4] at the copper content . Curve 3
describes the solubility limit of Cu in the bcc lattice taking
into account the concentration dependence of the poten-
tial suggested in [4]. Curve 1' is the theoretical estimate for
the solubility limit within the regular solid solution model
with the corresponding potential. Circles, triangles, and
squares denote the experimental data for the solubility
limit for fcc copper in α-Fe [1, 6, 7].
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On cooling from the high-temperature state, in the
Fe–Cu alloy (with a low copper content of c ~ 0.01), a

 structural transformation first occurs, Cu atoms
within the bcc crystal lattice are clustered, and eventu-
ally, when the precipitates attain a size of about 10 nm,
the lattice transforms into the fcc type [1]. At the stage
of formation of bcc-Cu nanoprecipitates, the strength
and plasticity of steel become higher, and this effect is
used in applications [2]. The absence of any adequate
theory quantitatively describing the solubility of cop-
per in iron has stimulated the development of models
with the ab initio parametrization [3, 4]. In [4], the
effective Cu–Cu pair potentials based on the partial
disordered-local moment model are suggested [5], the
Monte Carlo simulation of the alloy decomposition is
performed using these potentials, and good agreement
with the experimental data [1, 6, 7] is achieved for the
calculated solubility limit. The developed technique
was later used for other systems [8]. However, our fur-
ther studies revealed some substantial drawbacks of
this approach.

First, the Monte Carlo simulation in [4] gives the
stability limit of the homogeneous state (an analog of
spinodal) rather than the solubility limit itself. The
correct calculation procedure for the solubility limit
implies determining the residual Cu content (as the
atomic fraction) in the α-Fe solid solution at achieving
equilibrium with a large Cu precipitate. In [9], it was
shown that the solubility limit (binodal) and the sta-
bility limit of the homogeneous state (an analog of
spinodal) do not coincide in the Monte Carlo simula-
tions. In the case under study, they differ by one or two
orders of magnitude (see curves 1 and 2 in Fig. 1), so
there is no agreement with experiment.

Second, the Monte Carlo simulations give the cop-
per solubility in the alloy with the bcc lattice, whereas
the experimental data [1, 6, 7] correspond to the

γ−α
36
binodal obtained for fcc copper precipitates in the fcc
host material. Taking into account the known energy
difference between the bcc and fcc copper (
3.3 mRy) [10], we can find a correction factor

 (see the explanations below), which
leads to the additional lowering of the copper solubil-
ity by a factor of about 1.5 within the temperature
range under study.

Third, the model used in [4] is self-contradictory
because the suggested effective pair potentials  are

φ ≈

−φ∼exp[ / ]kT
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inconsistent with the calculations of the mixing poten-
tial  performed using the exact muffin-tin orbitals
in the coherent potential approximation (EMTO–
CPA). Indeed, according to the definition given in [4],

, where  is the coordination

number and  is the effective Cu–Cu interaction
potential at the pth coordination sphere. In the limit of
low copper content, the EMTO–CPA calculation
gives the values of the mixing potential in the para-
magnetic (PM) and ferromagnetic (FM) states  =
32 mRy and  = 50 mRy, respectively (see Fig. 1 in
[4]). However, using the potentials  suggested in [4],

we obtain  = 36 mRy and  = 86 mRy in the
same limit (see Fig. 4 in [4]). Taking into account that
the difference  characterizes the mag-
netic contribution to the mixing potential, we con-
clude that the effective potentials  obtained within
the model [5] overestimate this contribution by a fac-
tor of 3 in comparison to the EMTO–CPA calcula-
tion.

Fourth, although the potentials  and the values
of  were determined in [4] taking into account
their dependence on the copper content, the Monte
Carlo simulation was performed using the potentials
independent of the copper content. In fact, this means
that the magnetic characteristics of the material were
assumed to be the same both in the α-Fe host and in
the bulk of nonmagnetic Cu precipitates. Since the
declared aim of that study was to reveal the role of
magnetism in the alloy decomposition, such approxi-
mation is inadmissible.

The above analysis shows that the Cu solubility
limit in α-Fe has was not calculated in [4], whereas the
coincidence of the stability limit of the homogeneous
state (an analog of spinodal) with the experimentally
determined solubility limit turned out to be incidental.

In [11], the Monte Carlo program for the simula-
tions of the alloy decomposition taking into account
the concentration dependence of potentials  was
tested, but the solubility limit was not considered. At
the same time, the calculations show that the inclu-
sion of the concentration dependence of the potential
only increases the deviation of the solubility limit thus
calculated from its experimentally determined values
(see curve 3 in Fig. 1).

The simplest model is proposed below to deter-
mine the effective pair potential applicable for the
Monte Carlo simulations and to calculate the solubil-
ity limit being in a qualitative agreement with the
available experimental data.
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The density of internal energy in the alloy can be
written including the magnetic contribution in the
Heisenberg form

(1)

where  is the local copper content,  is the cop-
per mixing energy in the PM state, 

 is the correlation function for nearest-neighbor

spins, and  is the exchange energy
(  is the magnetization,  is the exchange integral, 
is the coordination number, and  is the volume per
atom). The factor  demonstrates that the mag-
netic contribution to the energy comes only from iron
atoms.

The effective mixing energy  is determined from
expansion of Eq. (1) in a power series of 

(2)

where , , 

, and the function  is taken in the form
.

The energy  in
PM and FM states was calculated in [4]. Here,  and

 are the energies of pure bcc Fe and Cu, respectively;
i.e.,  and 

(1). Taking into account that  and 
and introducing the mixing potential 

, we find from Eq. (1)

(3)

The energy  in Eq. (1) is also estimated from
the ab initio data for . Taking into account that

 and substituting (1) into the definition of
, we obtain

(4)

Parametrizing Eqs. (3) and (4) in terms of the
EMTO–CPA calculation [4], we find ,

, , , and 
28.8 (mRy).

The spin correlation function is determined in
qualitative agreement with the theory of Oguchi [12].
For this purpose, the empirical dependence for the
magnetization  [13] with the calculated 
values is used at  (where , ,
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Fig. 2. (Color online) Correlation function for the nearest
spins at  calculated by the empirical formula reported
in [13] (curve 1), taking into account the short-range mag-
netic order by Eq. (5) (curve 2) before and (curve 3) after
smoothing.

= 0c
Fig. 3. (Color online) (Curve 1) Monte Carlo results for
the solubility limit of Cu in the bcc lattice within the sug-
gested model at  mRy and (curve 1 ) its theoreti-
cal estimate. The theoretical estimate for the solubility
limits for (curve 2) fcc and (curve 3) bcc copper at

 mRy. Circles, triangles, and squares denote the
experimental data for the solubility limit of fcc copper in
α-Fe [1, 6, 7].

= .0 15 2J '

= .0 13 2J
 is the local Curie tem-
perature, and  K), whereas the “tail” of
the short-range order with the asymptotic behavior

is taken at . The arising kink in the correla-
tion function is smoothed using the moving average
(  K):

(5)

The constructed correlation function has a qualita-
tively reasonable form (Fig. 2) and is sufficient for the
aims of this study. A more detailed discussion of this
correlation function will be presented elsewhere.

The effective Cu–Cu pair interaction potential
is determined from the formula 

 taking into account only the near-
est-neighbor interactions. Then, having in mind that

 (in the bcc lattice), we obtain  .
The solubility limit is theoretically estimated by the

expression for the free energy density
(6)

where the entropy S is determined within the regular
solid solution model [14]

(7)
According to the general rule, the solubility limit is
theoretically estimated by “the rule of common tan-
gent” to the minima of the free energy [14]. Note that
this implies that the coefficients  and , determin-
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ing the behavior of  at high copper contents, do
not affect the solubility limit for copper in iron.

The Monte Carlo simulations were performed with
the software earlier tested in [11]. Taking into account
the concentration dependence of the potential, the
refinement of the used procedure was performed. The
copper content was calculated by averaging over the
occupation numbers in the first coordination sphere
around the atoms of each interacting Cu–Cu pair
neighboring the sites of the initial and final configura-
tions at the jump of atoms. Earlier in [11], a less accu-
rate procedure was employed, in which only the con-
centration around the pair involved in the jump was
taken into account, whereas the changes in the con-
centrations at the neighboring sites related to this jump
were neglected. The calculations were performed for
the supercell containing  bcc unit cells.
The solubility limit was calculated from the Cu con-
tent in the α-Fe-based solid solution being in equilib-
rium with a large Cu precipitate.

Figure 3 demonstrates the Monte Carlo results for
the solubility limit (curve 1), exhibiting qualitative
agreement with the available experimental data.
Curve 1' corresponds to the theoretical evaluation of
the binodal involving the suggested potential and
exhibits good agreement with the Monte Carlo simu-
lation results. Thus, to find the solubility limit, one
can successfully use the theoretical estimate. The
drawback of such calculation is that the difference
between the bcc and fcc copper precipitates is still
neglected, as in the earlier calculations [4, 15]. This
should lead to the left shift of the solubility limit.
Indeed, the calculated data (see curves 1 and 1' in
Fig. 3) correspond to bcc Cu precipitates, whereas the

( )J c

× ×90 90 90
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experiments correspond to the equilibrium of the cop-
per solid solution in α-Fe and the fcc Cu precipitates.
The energy difference between bcc and fcc Cu is about
3.3 mRy [10], and it is probably compensated by other
omitted contributions or by an inaccuracy of the
EMTO–CPA calculation of the exchange energy .
From the results of [3], it follows that such compensa-
tion can be assured by the contribution of the vibra-
tional entropy (which is disregarded here). However,
according to [4], this contribution vanishes near
1000 K. The right shift of the solubility limit can also
be favored by overestimating the exchange energy in
pure iron. The calculation represented here (see curves
1 and 1' in Fig. 3) was performed with the value

 mRy, obtained from the EMTO–CPA cal-
culation [4]. In the theory of phase transformations in
carbon steel, we earlier successfully used  mRy
[16]. The recent calculation by the magnetic cluster
expansion method gives  mRy [17].

Curves 2 and 3 in Fig. 3 correspond to the theoret-
ical estimate of the solubility for the cases of bcc and
fcc Cu under the assumption that  mRy (the
other parameters remain unchanged). To estimate the
solubility of fcc Cu in the range of high copper con-
tents, an additional contribution φ is introduced as

(8)

where the energy difference between the bcc and fcc
modifications of copper is  mRy (according to
[10]). Then, the rule of common tangent to the min-
ima of the free energy (under the assumption that the
solubility of copper in iron is sufficiently low) allows us
to relate the solubility limits for bcc and fcc Cu intro-
ducing the correction factor  and to esti-
mate the solubility for fcc Cu if the corresponding esti-
mate for bcc Cu is known. The obtained curve 2 is in
qualitative agreement with the experiment. This
agreement becomes worse with increasing tempera-
ture, especially at . Such a behavior suggests
that the deviation from the experimental data could be
related to some missed contribution related to the
entropy.

Thus, the effective pair potentials of Cu–Cu inter-
action suggested in [4] lead to an incorrect estimate for
the role of magnetism in the decomposition of the Fe–
Cu alloy. Instead, a simple model parametrized in
terms of the EMTO–CPA calculation of the mixing
potential in the para- and ferromagnetic states has
been proposed [4]. This model provides qualitative

( )J c

= .0 15 2J

=0 14J

= .0 13 2J

= .0 13 2J

= −φ + − ,Fe_in_fccCu( ) ( )f c g c TS

φ ≈ .3 3

−φexp[ / ]kT

> CT T
agreement with experimental data for the solubility
limit.
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